import pandas as pd import os import numpy as np from openai import OpenAI class HadithSearch: def __init__(self, api_key): self.client = OpenAI(api_key=api_key) self.data = None def _cosine_similarity(self, a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) def _get_embedding(self, text, model="text-embedding-ada-002"): try: text = text.replace("\n", " ") except Exception as e: pass response = self.client.chat.completions.create( model="gpt-3.5-turbo", messages=[ { "role": "system", "content": "Your task is to transform a described situation into a list of the top 3 most important things to look for in a database of Islamic hadith that could be helpful to bring answers. \n\nIt should be very specific and formatted with only the list and remove all occurences of the word 'Hadiths', just the topics sought. JSON FORMAT!\n\nThe goal is to use this list to perform cosine similarity embedding search on the hadith database. You provide this list in French" }, { "role": "user", "content": text } ], temperature=1, max_tokens=684, top_p=1, frequency_penalty=0, presence_penalty=0 ).choices[0].message.content return self.client.embeddings.create(input=f"{response}", model=model).data[0].embedding def load_data_from_json(self, json_file): self.data = pd.read_json(json_file) def search_hadiths(self, user_input, num_hadiths=10): if self.data is None: raise ValueError("Data not loaded. Use load_data_from_json method to load data.") embedding_column_name = "embeddings" try: self.data[embedding_column_name] = self.data.embeddings.apply(lambda x: x["embeding"]) except Exception as e: pass embedding = self._get_embedding(user_input, model='text-embedding-ada-002') self.data['similarity'] = self.data.embeddings.apply(lambda x: self._cosine_similarity(x, embedding)) results = self.data.sort_values('similarity', ascending=False).head(int(num_hadiths)).to_dict(orient="records") formatted_results = self._format_results(results) return formatted_results def _format_results(self, results): formatted_output = "" for idx, result in enumerate(results, start=1): similarity_percentage = str(round(result["similarity"] * 100, 2)) + "%" book = result["book"] chapter = result["chapter"] content = result["content"] display = ( f"## Hadith numéro {idx}: Pertinence par rapport à votre situation : {similarity_percentage}\n" f"## Livre : {book}\n" f"## Chapitre : {chapter}\n{content}\n\n------\n\n" ) formatted_output += display return formatted_output