from pptx import Presentation import re import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch import torch.nn.functional as F from transformers import pipeline # Load the pre-trained model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Ahmed235/roberta_classification") model = AutoModelForSequenceClassification.from_pretrained("Ahmed235/roberta_classification") device = torch.device("cpu") model = model.to(device) # Move the model to the CPU # Create a summarization pipeline summarizer = pipeline("summarization", model="Falconsai/text_summarization") def extract_text_from_pptx(file_path): presentation = Presentation(file_path) text = [] for slide_number, slide in enumerate(presentation.slides, start=1): for shape in slide.shapes: if hasattr(shape, "text"): text.append(shape.text) return "\n".join(text) def predict_pptx_content(file_path): try: extracted_text = extract_text_from_pptx(file_path) cleaned_text = re.sub(r'\s+', ' ', extracted_text) # Tokenize and encode the cleaned text input_encoding = tokenizer(cleaned_text, truncation=True, padding=True, return_tensors="pt") input_encoding = {key: val.to(device) for key, val in input_encoding.items()} # Move input tensor to CPU # Perform inference with torch.no_grad(): outputs = model(**input_encoding) logits = outputs.logits probabilities = F.softmax(logits, dim=1) predicted_label_id = torch.argmax(logits, dim=1).item() predicted_label = model.config.id2label[predicted_label_id] predicted_probability = probabilities[0][predicted_label_id].item() # Summarize the cleaned text summary = summarizer(cleaned_text, max_length=80, min_length=30, do_sample=False)[0]['summary_text'] prediction = { "Predicted Label": predicted_label, "Evaluation": f"Evaluate the topic according to {predicted_label} is: {predicted_probability}", "Summary": summary } return prediction except Exception as e: # Log the error details print(f"Error in predict_pptx_content: {e}") return {"error": str(e)} # Define the Gradio interface iface = gr.Interface( fn=predict_pptx_content, inputs=gr.File(type="filepath", label="Upload PowerPoint (.pptx) file"), outputs=["text", "text", "text"], # Predicted Label, Evaluation, Summary live=False, # Change to True for one-time analysis title="