# streamlit_app.py import streamlit as st from fastai.vision.all import * import matplotlib.pyplot as plt import matplotlib.image as mpimg # Function to get the label from the file name def get_label(file_name): return file_name.split('-')[0] # Function to prepare data (similar to your code) def prepare_data(food_path, label_a, label_b): for img in get_image_files(food_path): if label_a in str(img): img.rename(f"{img.parent}/{label_a}-{img.name}") elif label_b in str(img): img.rename(f"{img.parent}/{label_b}-{img.name}") else: os.remove(img) # Function to train the model def train_model(food_path, label_func): dls = ImageDataLoaders.from_name_func( food_path, get_image_files(food_path), valid_pct=0.2, seed=420, label_func=label_func, item_tfms=Resize(230) ) learn = cnn_learner(dls, resnet34, metrics=error_rate, pretrained=True) learn.fine_tune(epochs=1) return learn # Streamlit app def main(): st.title("Food Classifier Streamlit App") # Sidebar options options = ["Train Model", "Upload Image", "Test Random Images", "Confusion Matrix"] choice = st.sidebar.selectbox("Choose an option", options) if choice == "Train Model": st.subheader("Training the Model") food_path = Path("~/.fastai/data/food-101/food-101").expanduser() if not food_path.exists(): try: food_path = untar_data(URLs.FOOD) except FileExistsError: st.warning("Data directory already exists. Skipping download.") label_a = st.text_input("Enter label A:", "samosa") label_b = st.text_input("Enter label B:", "hot_and_sour_soup") if st.button("Train Model"): prepare_data(food_path, label_a, label_b) learn = train_model(food_path, get_label) st.session_state.model = learn # Save the model to session state st.success("Model trained successfully!") elif choice == "Upload Image": st.subheader("Upload Your Own Images") if "model" not in st.session_state: st.warning("Please train the model first.") else: uploaded_files = st.file_uploader("Choose images", type=["jpg", "jpeg", "png"], accept_multiple_files=True) if uploaded_files: for img in uploaded_files: img = PILImage.create(img) label, _, probs = st.session_state.model.predict(img) st.image(img, caption=f"This is a {label}.") st.write(f"{label}: {probs[1].item():.6f}") st.write(f"{label}: {probs[0].item():.6f}") elif choice == "Test Random Images": st.subheader("Test Using Images in Dataset") if "model" not in st.session_state: st.warning("Please train the model first.") else: for i in range(0, 5): # Change 5 to the number of images you want to display random_index = random.randint(0, len(get_image_files(food_path)) - 1) img_path = get_image_files(food_path)[random_index] img = mpimg.imread(img_path) label, _, probs = st.session_state.model.predict(img) st.image(img, caption=f"Predicted label: {label}") elif choice == "Confusion Matrix": st.subheader("Confusion Matrix") if "model" not in st.session_state: st.warning("Please train the model first.") else: interp = ClassificationInterpretation.from_learner(st.session_state.model) st.pyplot(interp.plot_confusion_matrix()) # Run the Streamlit app if __name__ == "__main__": main()