import spaces import os import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import gradio as gr huggingface_token = os.getenv("HUGGINGFACE_TOKEN") if not huggingface_token: pass print("no HUGGINGFACE_TOKEN if you need set secret ") #raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") model_id = "openbmb/MiniCPM-2B-dpo-bf16" device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu") dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id,trust_remote_code=True) print(model_id,device,dtype) histories = [] #model = None def call_generate_text(prompt, system_message="You are a helpful assistant."): if prompt =="": print("empty prompt return") return "" global histories #global model #if model != None:# and model.is_cuda: # print("Model is alive") #else: # model = AutoModelForCausalLM.from_pretrained( # model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device #) messages = [ {"role": "system", "content": system_message}, ] messages += histories user_message = {"role": "user", "content": prompt} messages += [user_message] try: text = generate_text(messages) histories += [user_message,{"role": "assistant", "content": text}] #model.to("cpu") return text except RuntimeError as e: print(f"An unexpected error occurred: {e}") #model = None return "" iface = gr.Interface( fn=call_generate_text, inputs=[ gr.Textbox(lines=3, label="Input Prompt"), gr.Textbox(lines=2, label="System Message", value="あなたは親切なアシスタントで常に日本語で返答します。"), ], outputs=gr.Textbox(label="Generated Text"), title=f"{model_id}", description=f"{model_id} CPU", ) print("Initialized") model = AutoModelForCausalLM.from_pretrained( model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device,trust_remote_code=True ) def generate_text(messages): #model.to("cuda") text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device) #pipeline has not to(device) result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7) generated_output = result[0]["generated_text"] if isinstance(generated_output, list): for message in reversed(generated_output): if message.get("role") == "assistant": content= message.get("content", "No content found.") return content return "No assistant response found." else: return "Unexpected output format." if __name__ == "__main__": print("Main") iface.launch()