# -- Import libraries
from langchain.prompts import PromptTemplate
from PIL import Image
from streamlit.logger import get_logger
from streamlit_player import st_player
import pandas as pd
import streamlit as st
import urllib.request
import argparse
import together
import logging
import requests
import utils
import spacy
import time
import os
import re
st.set_page_config(layout="wide")
@st.cache_data
def get_args():
# -- 1. Setup arguments
parser = argparse.ArgumentParser()
parser.add_argument('--DEFAULT_SYSTEM_PROMPT_LINK', type=str, default="https://raw.githubusercontent.com/AlbertoUAH/Castena/main/prompts/default_system_prompt.txt", help='Valor para DEFAULT_SYSTEM_PROMPT_LINK')
parser.add_argument('--PODCAST_URL_VIDEO_PATH', type=str, default="https://raw.githubusercontent.com/AlbertoUAH/Castena/main/data/podcast_youtube_video.csv", help='Valor para PODCAST_URL_VIDEO_PATH')
parser.add_argument('--TRANSCRIPTION', type=str, default='worldcast_roberto_vaquero', help='Name of the trascription')
parser.add_argument('--MODEL', type=str, default='togethercomputer/llama-2-13b-chat', help='Model name')
parser.add_argument('--EMB_MODEL', type=str, default='sentence-transformers/paraphrase-multilingual-mpnet-base-v2', help='Embedding model name')
os.system("python -m spacy download es_core_news_lg")
# -- 2. Setup env and logger
logger = get_logger(__name__)
# -- 3. Setup constants
args = parser.parse_args()
return args, logger
@st.cache_data
def get_podcast_data(path):
podcast_url_video_df = pd.read_csv(path, sep=';')
return podcast_url_video_df
@st.cache_resource(experimental_allow_widgets=True)
def get_basics_comp(emb_model, model, default_system_prompt_link, _logger, podcast_url_video_df, img_size=100):
r = requests.get("https://raw.githubusercontent.com/AlbertoUAH/Castena/main/media/castena-animated-icon.gif", stream=True)
icon = Image.open(r.raw)
icon = icon.resize((img_size, img_size))
with st.sidebar.container():
st.markdown(
"""
""",
unsafe_allow_html=True,
)
genre = st.sidebar.radio(
"Seleccione el LLM",
["LLAMA", "GPT"]
)
st.sidebar.info('Modelo LLAMA: ' + str(model).split('/')[-1] + '\nModelo GPT: gpt-3.5-turbo', icon="ℹ️")
podcast_list = list(podcast_url_video_df['podcast_name_lit'].apply(lambda x: x.replace("'", "")))
video_option = st.sidebar.selectbox(
"Seleccione el podcast",
podcast_list,
on_change=clean_chat
)
# -- Add icons
with st.sidebar.container():
st.markdown(
"""
""",
unsafe_allow_html=True,
)
video_option_joined = '_'.join(video_option.replace(': Entrevista a ', ' ').lower().split(' ')).replace("\'", "")
video_option_joined_path = "{}_transcription.txt".format(video_option_joined)
youtube_video_url = list(podcast_url_video_df[podcast_url_video_df['podcast_name'].str.contains(video_option_joined)]['youtube_video_url'])[0].replace("\'", "")
st.title("[Podcast: {}]({})".format(video_option.replace("'", "").title(), youtube_video_url))
# -- 4. Setup request for system prompt
f = urllib.request.urlopen(default_system_prompt_link)
default_system_prompt = str(f.read(), 'UTF-8')
# -- 5. Setup app
nlp, retriever = utils.setup_app(video_option_joined_path, emb_model, model, _logger)
# -- 6. Setup model
together.api_key = os.environ["TOGETHER_API_KEY"]
#together.Models.start(model)
return together, nlp, retriever, video_option, video_option_joined_path, default_system_prompt, youtube_video_url, genre
def clean_chat():
st.session_state.conversation = None
st.session_state.chat_history = None
st.session_state.messages = [{'role': 'assistant', 'content': 'Nuevo chat creado'}]
def main():
args, logger = get_args()
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<>\n", "\n<>\n\n"
PODCAST_URL_VIDEO_PATH = args.PODCAST_URL_VIDEO_PATH
DEFAULT_SYSTEM_PROMPT_LINK = args.DEFAULT_SYSTEM_PROMPT_LINK
TRANSCRIPTION = args.TRANSCRIPTION
TRANSCRIPTION_PATH = '{}_transcription.txt'.format(TRANSCRIPTION)
MODEL = args.MODEL
EMB_MODEL = args.EMB_MODEL
WIDTH = 50
SIDE = (100 - WIDTH) / 2
podcast_url_video_df = get_podcast_data(PODCAST_URL_VIDEO_PATH)
together, nlp, retriever, video_option, video_option_joined_path, default_system_prompt, youtube_video_url, genre = get_basics_comp(EMB_MODEL, MODEL, DEFAULT_SYSTEM_PROMPT_LINK, logger,
podcast_url_video_df, img_size=100)
# -- 6. Setup prompt template + llm chain
instruction = """CONTEXTO:/n/n {context}/n
PREGUNTA: {question}
RESPUESTA: """
prompt_template = utils.get_prompt(instruction, default_system_prompt, B_SYS, E_SYS, B_INST, E_INST, logger)
llama_prompt = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": llama_prompt}
qa_chain = utils.create_llm_chain(MODEL, retriever, chain_type_kwargs, logger, video_option_joined_path)
# ---------------------------------------------------------------------
_, container, _ = st.columns([SIDE, WIDTH, SIDE])
with container:
st_player(utils.typewrite(youtube_video_url))
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("¡Pregunta lo que quieras!"):
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant"):
if 'GPT' not in genre:
if prompt.lower() == 'resume':
llm_response = utils.summarise_doc(TRANSCRIPTION_PATH, model_name='llama', model=MODEL)
st.markdown(llm_response)
else:
llm_response = qa_chain(prompt)['result']
llm_response = utils.process_llm_response(llm_response)
st.markdown(llm_response)
start_time_str_list = []; start_time_seconds_list = []; end_time_seconds_list = []
for response in llm_response.split('\n'):
if re.search(r'(\d{2}:\d{2}:\d{2}(.\d{6})?)', response) != None:
start_time_str, start_time_seconds, _, end_time_seconds = utils.add_hyperlink_and_convert_to_seconds(response)
start_time_str_list.append(start_time_str)
start_time_seconds_list.append(start_time_seconds)
end_time_seconds_list.append(end_time_seconds)
if start_time_str_list:
for start_time_seconds, start_time_str, end_time_seconds in zip(start_time_seconds_list, start_time_str_list, end_time_seconds_list):
st.markdown("__Fragmento: " + start_time_str + "__")
_, container, _ = st.columns([SIDE, WIDTH, SIDE])
with container:
st_player(youtube_video_url.replace("?enablejsapi=1", "") + f'?start={start_time_seconds}&end={end_time_seconds}')
else:
if prompt.lower() == 'resume':
llm_response = utils.summarise_doc(TRANSCRIPTION_PATH, model_name='gpt')
st.markdown(llm_response)
else:
llm_response = utils.get_gpt_response(TRANSCRIPTION_PATH, prompt, logger)
llm_response = utils.process_llm_response(llm_response)
st.markdown(llm_response)
start_time_str_list = []; start_time_seconds_list = []; end_time_seconds_list = []
for response in llm_response.split('\n'):
if re.search(r'(\d{2}:\d{2}:\d{2}(.\d{6})?)', response) != None:
start_time_str, start_time_seconds, _, end_time_seconds = utils.add_hyperlink_and_convert_to_seconds(response)
start_time_str_list.append(start_time_str)
start_time_seconds_list.append(start_time_seconds)
end_time_seconds_list.append(end_time_seconds)
if start_time_str_list:
for start_time_seconds, start_time_str, end_time_seconds in zip(start_time_seconds_list, start_time_str_list, end_time_seconds_list):
st.markdown("__Fragmento: " + start_time_str + "__")
_, container, _ = st.columns([SIDE, WIDTH, SIDE])
with container:
st_player(youtube_video_url.replace("?enablejsapi=1", "") + f'?start={start_time_seconds}&end={end_time_seconds}')
st.session_state.messages.append({"role": "assistant", "content": llm_response})
# -- Sample: streamlit run app.py -- --DEFAULT_SYSTEM_PROMPT_LINK=https://raw.githubusercontent.com/AlbertoUAH/Castena/main/prompts/default_system_prompt.txt --PODCAST_URL_VIDEO_PATH=https://raw.githubusercontent.com/AlbertoUAH/Castena/main/data/podcast_youtube_video.csv --TRANSCRIPTION=worldcast_roberto_vaquero --MODEL=togethercomputer/llama-2-7b-chat --EMB_MODEL=BAAI/bge-base-en-v1.5
if __name__ == '__main__':
main()