# -- Utils .py file # -- Libraries from typing import Any, Dict, List, Mapping, Optional from pydantic import Extra, Field, root_validator from langchain_core.runnables import RunnablePassthrough from langchain.llms.base import LLM from langchain.chat_models import ChatOpenAI from langchain.prompts import PromptTemplate from langchain.schema import StrOutputParser from langchain.utils import get_from_dict_or_env from langchain.vectorstores import Chroma from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter from langchain.chains import RetrievalQA, MapReduceDocumentsChain, ReduceDocumentsChain from langchain.document_loaders import TextLoader from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings from langchain.chains import LLMChain from langchain.evaluation import StringEvaluator from typing import Any, Optional from langsmith.client import Client from langchain.smith import RunEvalConfig, run_on_dataset from langchain.chains.combine_documents.stuff import StuffDocumentsChain import streamlit as st import together import textwrap import getpass import spacy import os import re #os.environ["TOGETHER_API_KEY"] = "6101599d6e33e3bda336b8d007ca22e35a64c72cfd52c2d8197f663389fc50c5" #os.environ["OPENAI_API_KEY"] = "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" os.environ["LANGCHAIN_TRACING_V2"] = "true" client = Client() # -- LLM class class TogetherLLM(LLM): """Together large language models.""" model: str = "togethercomputer/llama-2-70b-chat" """model endpoint to use""" together_api_key: str = os.environ["TOGETHER_API_KEY"] """Together API key""" temperature: float = 0.7 """What sampling temperature to use.""" max_tokens: int = 512 """The maximum number of tokens to generate in the completion.""" original_transcription: str = "" """Original transcription""" class Config: extra = Extra.forbid #@root_validator(skip_on_failure=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that the API key is set.""" api_key = get_from_dict_or_env( values, "together_api_key", "TOGETHER_API_KEY" ) values["together_api_key"] = api_key return values @property def _llm_type(self) -> str: """Return type of LLM.""" return "together" def clean_duplicates(self, transcription: str) -> str: transcription = transcription.strip().replace('/n/n ', """ """) new_transcription_aux = [] for text in transcription.split('\n\n'): if text not in new_transcription_aux: is_substring = any(transcription_aux.replace('"', '').lower() in text.replace('"', '').lower()\ for transcription_aux in new_transcription_aux) if not is_substring: new_transcription_aux.append(text) return '\n\n'.join(new_transcription_aux) def _call( self, prompt: str, **kwargs: Any, ) -> str: """Call to Together endpoint.""" regex_transcription = r'CONTEXTO:(\n.*)+PREGUNTA' regex_init_transcription = r"Desde el instante [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? hasta [0-9]+:[0-9]+:[0-9]+(?:\.[0-9]+)? [a-zA-Záéíóú ]+ dice: ?" # -- Extract transcription together.api_key = self.together_api_key cleaned_prompt = self.clean_duplicates(prompt) resultado = re.search(regex_transcription, cleaned_prompt, re.DOTALL) resultado = re.sub(regex_init_transcription, "", resultado.group(1).strip()).replace('\"', '') resultado_alpha_num = [re.sub(r'\W+', ' ', resultado_aux).strip().lower() for resultado_aux in resultado.split('\n\n')] # -- Setup new transcription format, without duplicates and with its correspondent speaker new_transcription = [] for transcription in self.original_transcription.split('\n\n'): transcription_cleaned = re.sub(regex_init_transcription, "", transcription.strip()).replace('\"', '') transcription_cleaned = re.sub(r'\W+', ' ', transcription_cleaned).strip().lower() for resultado_aux in resultado_alpha_num: if resultado_aux in transcription_cleaned: init_transcription = re.search(regex_init_transcription, transcription).group(0) new_transcription.append(init_transcription + '\"' + resultado_aux + '\"') # -- Merge with original transcription new_transcription = '\n\n'.join(list(set(new_transcription))) new_cleaned_prompt = re.sub(regex_transcription, f"""CONTEXTO: {new_transcription} PREGUNTA:""", cleaned_prompt, re.DOTALL) print(new_cleaned_prompt) output = together.Complete.create(new_cleaned_prompt, model=self.model, max_tokens=self.max_tokens, temperature=self.temperature, ) text = output['output']['choices'][0]['text'] text = self.clean_duplicates(text) return text # -- Langchain evaluator class RelevanceEvaluator(StringEvaluator): """An LLM-based relevance evaluator.""" def __init__(self): llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) template = """En una escala del 0 al 100, ¿Como de relevante es la siguiente salida con respecto a la siguiente entrada? -------- ENTRADA: {input} -------- SALIDA: {prediction} -------- Razona paso a paso porqué el score que has elegido es apropiado y despues muestra la puntuacion al final.""" self.eval_chain = LLMChain.from_string(llm=llm, template=template) @property def requires_input(self) -> bool: return True @property def requires_reference(self) -> bool: return False @property def evaluation_name(self) -> str: return "scored_relevance" def _evaluate_strings( self, prediction: str, input: Optional[str] = None, reference: Optional[str] = None, **kwargs: Any ) -> dict: evaluator_result = self.eval_chain( dict(input=input, prediction=prediction), **kwargs ) reasoning, score = evaluator_result["text"].split("\n", maxsplit=1) score = re.search(r"\d+", score).group(0) if score is not None: score = float(score.strip()) / 100.0 return {"score": score, "reasoning": reasoning.strip()} # -- Get GPT response def get_gpt_response(transcription_path, query, logger): template = """Eres un asistente. Su misión es proporcionar respuestas precisas a preguntas relacionadas con la transcripción de una entrevista de YouTube. No saludes en tu respuesta. No repita la pregunta en su respuesta. Sea conciso y omita las exenciones de responsabilidad o los mensajes predeterminados. Solo responda la pregunta, no agregue texto adicional. No des tu opinión personal ni tu conclusión personal. No haga conjeturas ni suposiciones. Si no sabe la respuesta de la pregunta o el contexto está vacío, responda cortésmente por qué no sabe la respuesta. Por favor no comparta información falsa. {context} Pregunta: {question} Respuesta:""" rag_prompt_custom = PromptTemplate.from_template(template) loader = TextLoader(transcription_path) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings()) retriever = vectorstore.as_retriever() llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | rag_prompt_custom | llm | StrOutputParser() ) llm_output = rag_chain.invoke(query) # dataset = client.create_dataset(dataset_name="Sample LLM dataset", description="A dataset with LLM inputs and outputs", data_type="llm") # client.create_example( # inputs={"input": query}, # outputs={"output": llm_output}, # dataset_id=dataset.id, # ) # -- Run custom evaluator # evaluation_config = RunEvalConfig( # custom_evaluators = [RelevanceEvaluator()], # ) # eval_output = run_on_dataset( # dataset_name="Sample LLM dataset", # llm_or_chain_factory=rag_chain, # evaluation=evaluation_config, # client=client, # ) # logger.info("Eval output!!!!") # logger.info(eval_output) return llm_output # -- Text summarisation with OpenAI (map-reduce technique) def summarise_doc(transcription_path, model_name, model=None): if model_name == 'gpt': llm = ChatOpenAI(temperature=0, max_tokens=1024) # -- Map loader = TextLoader(transcription_path) docs = loader.load() map_template = """Lo siguiente es listado de fragmentos de una conversacion: {docs} En base a este listado, por favor identifica los temas/topics principales. Respuesta:""" map_prompt = PromptTemplate.from_template(map_template) map_chain = LLMChain(llm=llm, prompt=map_prompt) # -- Reduce reduce_template = """A continuacion se muestra un conjunto de resumenes: {docs} Usalos para crear un unico resumen consolidado de todos los temas/topics principales. Respuesta:""" reduce_prompt = PromptTemplate.from_template(reduce_template) # Run chain reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt) # Takes a list of documents, combines them into a single string, and passes this to an LLMChain combine_documents_chain = StuffDocumentsChain( llm_chain=reduce_chain, document_variable_name="docs" ) # Combines and iteravely reduces the mapped documents reduce_documents_chain = ReduceDocumentsChain( # This is final chain that is called. combine_documents_chain=combine_documents_chain, # If documents exceed context for `StuffDocumentsChain` collapse_documents_chain=combine_documents_chain, # The maximum number of tokens to group documents into. token_max=3000, ) # Combining documents by mapping a chain over them, then combining results map_reduce_chain = MapReduceDocumentsChain( # Map chain llm_chain=map_chain, # Reduce chain reduce_documents_chain=reduce_documents_chain, # The variable name in the llm_chain to put the documents in document_variable_name="docs", # Return the results of the map steps in the output return_intermediate_steps=False, ) text_splitter = CharacterTextSplitter.from_tiktoken_encoder( chunk_size=3000, chunk_overlap=0 ) split_docs = text_splitter.split_documents(docs) doc_summary = map_reduce_chain.run(split_docs) else: loader = TextLoader(transcription_path) docs = loader.load() # -- Keep original transcription with open(transcription_path, 'r') as f: formatted_transcription = f.read() llm = TogetherLLM( model= model, temperature = 0.0, max_tokens = 1024, original_transcription = formatted_transcription ) # Map map_template = """Lo siguiente es un extracto de una conversación entre dos hablantes en español. {docs} Por favor resuma la conversación en español. Resumen:""" map_prompt = PromptTemplate(template=map_template, input_variables=["docs"]) map_chain = LLMChain(llm=llm, prompt=map_prompt) # Reduce reduce_template = """Lo siguiente es una lista de resumenes en español: {doc_summaries} Tómelos y descríbalos en un resumen final consolidado en español. Además, enumera los temas principales de la conversación en español. Resumen:""" reduce_prompt = PromptTemplate(template=reduce_template, input_variables=["doc_summaries"]) # Run chain reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt) # Takes a list of documents, combines them into a single string, and passes this to an LLMChain combine_documents_chain = StuffDocumentsChain( llm_chain=reduce_chain, document_variable_name="doc_summaries" ) # Combines and iteravely reduces the mapped documents reduce_documents_chain = ReduceDocumentsChain( # This is final chain that is called. combine_documents_chain=combine_documents_chain, # If documents exceed context for `StuffDocumentsChain` collapse_documents_chain=combine_documents_chain, # The maximum number of tokens to group documents into. verbose=True, token_max=1024 ) # Combining documents by mapping a chain over them, then combining results map_reduce_chain = MapReduceDocumentsChain( # Map chain llm_chain=map_chain, # Reduce chain reduce_documents_chain=reduce_documents_chain, # The variable name in the llm_chain to put the documents in document_variable_name="docs", # Return the results of the map steps in the output return_intermediate_steps=False, verbose=True ) text_splitter = CharacterTextSplitter( separator = "\n\n", chunk_size = 2000, chunk_overlap = 50, length_function = len, is_separator_regex = True, ) split_docs = text_splitter.create_documents([docs]) return doc_summary # -- Python function to setup basic features: SpaCy pipeline and LLM model @st.cache_resource def setup_app(transcription_path, emb_model, model, _logger): # -- Setup enviroment and features nlp = spacy.load('es_core_news_lg') _logger.info('Setup environment and features...') # -- Setup LLM together.api_key = os.environ["TOGETHER_API_KEY"] # List available models and descriptons models = together.Models.list() # Set llama2 7b LLM #together.Models.start(model) _logger.info('Setup environment and features - FINISHED!') # -- Read translated transcription _logger.info('Loading transcription...') loader = TextLoader(transcription_path) documents = loader.load() # Splitting the text into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100) texts = text_splitter.split_documents(documents) _logger.info('Loading transcription - FINISHED!') # -- Load embedding _logger.info('Loading embedding...') encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity model_norm = HuggingFaceEmbeddings( model_name=emb_model, model_kwargs={'device': 'cpu'}, encode_kwargs=encode_kwargs ) _logger.info('Loading embedding - FINISHED!') # -- Create document database _logger.info('Creating document database...') # Embed and store the texts # Supplying a persist_directory will store the embeddings on disk persist_directory = 'db' ## Here is the nmew embeddings being used embedding = model_norm vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory) # -- Make a retreiver retriever = vectordb.as_retriever(search_kwargs={"k": 5}) _logger.info('Creating document database - FINISHED!') _logger.info('Setup finished!') return nlp, retriever # -- Function to get prompt template def get_prompt(instruction, system_prompt, b_sys, e_sys, b_inst, e_inst, _logger): new_system_prompt = b_sys + system_prompt + e_sys prompt_template = b_inst + new_system_prompt + instruction + e_inst _logger.info('Prompt template created: {}'.format(instruction)) return prompt_template # -- Function to create the chain to answer questions @st.cache_resource def create_llm_chain(model, _retriever, _chain_type_kwargs, _logger, transcription_path): _logger.info('Creating LLM chain...') # -- Keep original transcription with open(transcription_path, 'r') as f: formatted_transcription = f.read() llm = TogetherLLM( model= model, temperature = 0.0, max_tokens = 1024, original_transcription = formatted_transcription ) qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=_retriever, chain_type_kwargs=_chain_type_kwargs, return_source_documents=True) _logger.info('Creating LLM chain - FINISHED!') return qa_chain # ------------------------------------------- # -- Auxiliar functions def wrap_text_preserve_newlines(text, width=110): # Split the input text into lines based on newline characters lines = text.split('\n') # Wrap each line individually wrapped_lines = [textwrap.fill(line, width=width) for line in lines] # Join the wrapped lines back together using newline characters wrapped_text = '\n'.join(wrapped_lines) return wrapped_text def process_llm_response(llm_response): return wrap_text_preserve_newlines(llm_response) def time_to_seconds(time_str): parts = time_str.split(':') hours, minutes, seconds = map(float, parts) return int((hours * 3600) + (minutes * 60) + seconds) # -- Extract seconds from transcription def add_hyperlink_and_convert_to_seconds(text): time_pattern = r'(\d{2}:\d{2}:\d{2}(?:.\d{6})?)' def get_seconds(match): if len(match) == 2: start_time_str, end_time_str = match[0], match[1] else: start_time_str = match[0] end_time_str = re.findall(r"Desde el instante {} hasta {}".format(start_time_str, time_pattern))[0].split('hasta ')[-1] start_time_seconds = time_to_seconds(start_time_str) end_time_seconds = time_to_seconds(end_time_str) return start_time_str, start_time_seconds, end_time_str, end_time_seconds start_time_str, start_time_seconds, end_time_str, end_time_seconds = get_seconds(re.findall(time_pattern, text)) return start_time_str, start_time_seconds, end_time_str, end_time_seconds # -- Streamlit HTML template def typewrite(youtube_video_url, i=0): youtube_video_url = youtube_video_url.replace("?enablejsapi=1", "") margin = "{margin: 0;}" html = f"""

""" return html