import os import gradio as gr import json import logging import torch from PIL import Image from os import path from torchvision import transforms from dataclasses import dataclass import math from typing import Callable import spaces from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForText2Image from diffusers import StableDiffusion3Pipeline, FlowMatchEulerDiscreteScheduler # pip install diffusers>=0.31.0 from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer from diffusers.models.transformers import SD3Transformer2DModel import copy import random import time import safetensors.torch from tqdm import tqdm from huggingface_hub import HfFileSystem, ModelCard from huggingface_hub import login, hf_hub_download from safetensors.torch import load_file hf_token = os.environ.get("HF_TOKEN") login(token=hf_token) cache_path = path.join(path.dirname(path.abspath(__file__)), "models") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path #torch.set_float32_matmul_precision("medium") #torch._inductor.config.conv_1x1_as_mm = True #torch._inductor.config.coordinate_descent_tuning = True #torch._inductor.config.epilogue_fusion = False #torch._inductor.config.coordinate_descent_check_all_directions = True # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) # Initialize the base model #base_model = "stabilityai/stable-diffusion-3.5-large" # Initialize the base model dtype = torch.bfloat16 base_model = "ariG23498/sd-3.5-merged" pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to("cuda") #pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16).to("cuda") torch.cuda.empty_cache() device = "cuda" if torch.cuda.is_available() else "cpu" #model_id = ("zer0int/LongCLIP-GmP-ViT-L-14") #config = CLIPConfig.from_pretrained(model_id) #config.text_config.max_position_embeddings = 77 #clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True) #clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=77) #pipe.tokenizer = clip_processor.tokenizer #pipe.text_encoder = clip_model.text_model #pipe.tokenizer_max_length = 77 #pipe.text_encoder.dtype = torch.bfloat16 #clipmodel = 'norm' #if clipmodel == "long": # model_id = "zer0int/LongCLIP-GmP-ViT-L-14" # config = CLIPConfig.from_pretrained(model_id) # maxtokens = 248 #if clipmodel == "norm": # model_id = "zer0int/CLIP-GmP-ViT-L-14" # config = CLIPConfig.from_pretrained(model_id) # maxtokens = 77 #clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda") #clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True) #pipe.tokenizer = clip_processor.tokenizer #pipe.text_encoder = clip_model.text_model #pipe.tokenizer_max_length = maxtokens #pipe.text_encoder.dtype = torch.bfloat16 #pipe.transformer.to(memory_format=torch.channels_last) #pipe.vae.to(memory_format=torch.channels_last) #pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) #pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) MAX_SEED = 2**32-1 class calculateDuration: def __init__(self, activity_name=""): self.activity_name = activity_name def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): self.end_time = time.time() self.elapsed_time = self.end_time - self.start_time if self.activity_name: print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") else: print(f"Elapsed time: {self.elapsed_time:.6f} seconds") def update_selection(evt: gr.SelectData, width, height): selected_lora = loras[evt.index] new_placeholder = f"Prompt with activator word(s): '{selected_lora['trigger_word']}'! " lora_repo = selected_lora["repo"] lora_trigger = selected_lora['trigger_word'] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}). Prompt using: '{lora_trigger}'!" if "aspect" in selected_lora: if selected_lora["aspect"] == "portrait": width = 768 height = 1024 elif selected_lora["aspect"] == "landscape": width = 1024 height = 768 return ( gr.update(placeholder=new_placeholder), updated_text, evt.index, width, height, ) @spaces.GPU(duration=50) def infer(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress): pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(seed) with calculateDuration("Generating image"): # Generate image image = pipe( prompt=f"{prompt} {trigger_word}", negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, ).images[0] return image def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): if selected_index is None: raise gr.Error("You must select a LoRA before proceeding.") selected_lora = loras[selected_index] lora_path = selected_lora["repo"] trigger_word = selected_lora['trigger_word'] # Load LoRA weights with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): if "weights" in selected_lora: pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) else: pipe.load_lora_weights(lora_path) # Set random seed for reproducibility with calculateDuration("Randomizing seed"): if randomize_seed: seed = random.randint(0, MAX_SEED) image = infer(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress) pipe.to("cpu") pipe.unload_lora_weights() return image, seed run_lora.zerogpu = True css = ''' #gen_btn{height: 100%} #title{text-align: center} #title h1{font-size: 3em; display:inline-flex; align-items:center} #title img{width: 100px; margin-right: 0.5em} #gallery .grid-wrap{height: 10vh} ''' with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: title = gr.HTML( """