import os import requests import gradio as gr from conversation import Conversation class BaseModel: name: str endpoint: str namespace: str generation_params: dict def __init__(self, name, endpoint, namespace, generation_params): self.name = name self.endpoint = endpoint self.namespace = namespace self.generation_params = generation_params def generate_response(self, conversation, custom_generation_params=None): prompt = self._get_prompt(conversation) response = self._get_response(prompt, custom_generation_params) return response def _get_prompt(self, conversation: Conversation): prompt = "\n".join( [conversation.memory, conversation.prompt] ).strip() for message in conversation.messages: prompt += f"\n{message['from'].strip()}: {message['value'].strip()}" prompt += f"\n{conversation.bot_label}:" return prompt def _get_response(self, text, custom_generation_params): api = str(os.environ.get("API_BASE_PATH")).replace("\{\}", "{}") api = api.format(self.endpoint, self.namespace) parameters = self.generation_params if custom_generation_params is not None: parameters.update(custom_generation_params) payload = {'instances': [text], "parameters": parameters} resp = requests.post(api, json=payload, timeout=600) if resp.status_code != 200: raise gr.Error(f"Endpoint returned code: {resp.status_code}. " f"Solution: " f"1. Scale-to-Zero enabled, so please wait for some minutes and try again. " f"2. Probably the response generated by the model is to big, try changing max_new_tokens. " f"3. If nothing helps — report the problem.") predictions = resp.json()["predictions"] if isinstance(predictions[0], str): return predictions[0].strip() predictions = sorted(predictions[0], key=lambda d: d['score']) return predictions[-1]["text"].strip()