import gradio as gr import transformers from transformers import BartTokenizer, BartForConditionalGeneration model_name = 'facebook/bart-large-cnn' tokenizer = BartTokenizer.from_pretrained(model_name) model = BartForConditionalGeneration.from_pretrained(model_name) def summarize(inp): inp = inp.replace('\n','') inp = tokenizer.encode(inp, return_tensors='pt', max_length=1024) summary_ids = model.generate(inp, num_beams=4, max_length=150, early_stopping=True) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary gr.Interface(fn=summarize, inputs=gr.components.Textbox(lines=7, label="Input Text"), outputs="text").launch()