import os import torch import torch.nn.functional as F import torchvision.transforms as T from mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot from mmseg.core.evaluation import get_palette import mmcv import gradio as gr from huggingface_hub import hf_hub_download # Device on which to run the model # Set to cuda to load on GPU device = "cpu" checkpoint_file = hf_hub_download(repo_id="Andy1621/uniformer", filename="upernet_global_small.pth") config_file = './exp/upernet_global_small/config.py' # init detector # build the model from a config file and a checkpoint file model = init_segmentor(config_file, checkpoint_file, device='cpu') def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) def inference(img): result = inference_segmentor(model, img) res_img = show_result_pyplot(model, img, result, get_palette('ade')) return res_img demo = gr.Blocks() with demo: gr.Markdown( """ # UniFormer-S Gradio demo for UniFormer: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. """ ) with gr.Box(): with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label='Input Image', type='numpy') with gr.Row(): submit_button = gr.Button('Submit') with gr.Column(): res_image = gr.Image(type='numpy', label='Segmentation Resutls') with gr.Row(): example_images = gr.Dataset(components=[input_image], samples=[['demo1.jpg'], ['demo2.jpg'], ['demo3.jpg']]) gr.Markdown( """

UniFormer: Unifying Convolution and Self-attention for Visual Recognition | Github Repo

""" ) submit_button.click(fn=inference, inputs=input_image, outputs=res_image) example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components) demo.launch(enable_queue=True)