import os import imageio from PIL import Image import torch import torch.nn.functional as F from diffusers import IFSuperResolutionPipeline, VideoToVideoSDPipeline from diffusers.utils.torch_utils import randn_tensor from showone.pipelines import TextToVideoIFPipeline, TextToVideoIFInterpPipeline, TextToVideoIFSuperResolutionPipeline from showone.pipelines.pipeline_t2v_base_pixel import tensor2vid from showone.pipelines.pipeline_t2v_sr_pixel_cond import TextToVideoIFSuperResolutionPipeline_Cond # Base Model # When using "showlab/show-1-base-0.0", it's advisable to increase the number of inference steps (e.g., 100) # and opt for a larger guidance scale (e.g., 12.0) to enhance visual quality. pretrained_model_path = "showlab/show-1-base" pipe_base = TextToVideoIFPipeline.from_pretrained( pretrained_model_path, torch_dtype=torch.float16, variant="fp16" ) pipe_base.enable_model_cpu_offload() # Interpolation Model pretrained_model_path = "showlab/show-1-interpolation" pipe_interp_1 = TextToVideoIFInterpPipeline.from_pretrained( pretrained_model_path, torch_dtype=torch.float16, variant="fp16" ) pipe_interp_1.enable_model_cpu_offload() # Super-Resolution Model 1 # Image super-resolution model from DeepFloyd https://huggingface.co/DeepFloyd/IF-II-L-v1.0 pretrained_model_path = "DeepFloyd/IF-II-L-v1.0" pipe_sr_1_image = IFSuperResolutionPipeline.from_pretrained( pretrained_model_path, text_encoder=None, torch_dtype=torch.float16, variant="fp16" ) pipe_sr_1_image.enable_model_cpu_offload() pretrained_model_path = "showlab/show-1-sr1" pipe_sr_1_cond = TextToVideoIFSuperResolutionPipeline_Cond.from_pretrained( pretrained_model_path, torch_dtype=torch.float16 ) pipe_sr_1_cond.enable_model_cpu_offload() # Super-Resolution Model 2 pretrained_model_path = "showlab/show-1-sr2" pipe_sr_2 = VideoToVideoSDPipeline.from_pretrained( pretrained_model_path, torch_dtype=torch.float16 ) pipe_sr_2.enable_model_cpu_offload() pipe_sr_2.enable_vae_slicing() # Inference prompt = "A burning lamborghini driving on rainbow." output_dir = "./outputs/example" negative_prompt = "low resolution, blur" seed = 345 os.makedirs(output_dir, exist_ok=True) # Text embeds prompt_embeds, negative_embeds = pipe_base.encode_prompt(prompt) # Keyframes generation (8x64x40, 2fps) video_frames = pipe_base( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, num_frames=8, height=40, width=64, num_inference_steps=75, guidance_scale=9.0, generator=torch.manual_seed(seed), output_type="pt" ).frames imageio.mimsave(f"{output_dir}/{prompt}_base.gif", tensor2vid(video_frames.clone()), fps=2) # Frame interpolation (8x64x40, 2fps -> 29x64x40, 7.5fps) bsz, channel, num_frames, height, width = video_frames.shape new_num_frames = 3 * (num_frames - 1) + num_frames new_video_frames = torch.zeros((bsz, channel, new_num_frames, height, width), dtype=video_frames.dtype, device=video_frames.device) new_video_frames[:, :, torch.arange(0, new_num_frames, 4), ...] = video_frames init_noise = randn_tensor((bsz, channel, 5, height, width), dtype=video_frames.dtype, device=video_frames.device, generator=torch.manual_seed(seed)) for i in range(num_frames - 1): batch_i = torch.zeros((bsz, channel, 5, height, width), dtype=video_frames.dtype, device=video_frames.device) batch_i[:, :, 0, ...] = video_frames[:, :, i, ...] batch_i[:, :, -1, ...] = video_frames[:, :, i + 1, ...] batch_i = pipe_interp_1( pixel_values=batch_i, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, num_frames=batch_i.shape[2], height=40, width=64, num_inference_steps=75, guidance_scale=4.0, generator=torch.manual_seed(seed), output_type="pt", init_noise=init_noise, cond_interpolation=True, ).frames new_video_frames[:, :, i * 4:i * 4 + 5, ...] = batch_i video_frames = new_video_frames imageio.mimsave(f"{output_dir}/{prompt}_interp.gif", tensor2vid(video_frames.clone()), fps=8) # Super-resolution 1 (29x64x40 -> 29x256x160) bsz, channel, num_frames, height, width = video_frames.shape window_size, stride = 8, 7 new_video_frames = torch.zeros( (bsz, channel, num_frames, height * 4, width * 4), dtype=video_frames.dtype, device=video_frames.device) for i in range(0, num_frames - window_size + 1, stride): batch_i = video_frames[:, :, i:i + window_size, ...] all_frame_cond = None if i == 0: first_frame_cond = pipe_sr_1_image( image=video_frames[:, :, 0, ...], prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, height=height * 4, width=width * 4, num_inference_steps=70, guidance_scale=4.0, noise_level=150, generator=torch.manual_seed(seed), output_type="pt" ).images first_frame_cond = first_frame_cond.unsqueeze(2) else: first_frame_cond = new_video_frames[:, :, i:i + 1, ...] batch_i = pipe_sr_1_cond( image=batch_i, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, first_frame_cond=first_frame_cond, height=height * 4, width=width * 4, num_inference_steps=125, guidance_scale=7.0, noise_level=250, generator=torch.manual_seed(seed), output_type="pt" ).frames new_video_frames[:, :, i:i + window_size, ...] = batch_i video_frames = new_video_frames imageio.mimsave(f"{output_dir}/{prompt}_sr1.gif", tensor2vid(video_frames.clone()), fps=8) # Super-resolution 2 (29x256x160 -> 29x576x320) video_frames = [Image.fromarray(frame).resize((576, 320)) for frame in tensor2vid(video_frames.clone())] video_frames = pipe_sr_2( prompt, negative_prompt=negative_prompt, video=video_frames, strength=0.8, num_inference_steps=50, generator=torch.manual_seed(seed), output_type="pt" ).frames imageio.mimsave(f"{output_dir}/{prompt}.gif", tensor2vid(video_frames.clone()), fps=8)