import torch import gradio as gr from transformers import pipeline device = "cuda" if torch.cuda.is_available() else "cpu" def predict(image): classifier = pipeline(task="image-classification") preds = classifier(image) return {pred["label"]: round(float(pred["score"]), 4) for pred in preds} def clear_interface(): interface.inputs[0].clear() interface.outputs[0].clear() description = """ """ interface = gr.Interface( fn=predict, inputs=[ gr.inputs.Image(label="Image to classify", type="pil"), ], outputs=gr.outputs.Label(), title="Image Classifier", description=description, buttons=[ gr.Button(label="Clear", callback=clear_interface) ] ) interface.launch()