import torch import gradio as gr from transformers import pipeline device = "cuda" if torch.cuda.is_available() else "cpu" def predict(image): classifier = pipeline(task="image-classification") preds = classifier(image) return {pred["label"]: round(float(pred["score"]), 4) for pred in preds} def clear(): return None, None description = """ """ gr.Interface( fn=predict, inputs=[ gr.inputs.Image(label="Image to classify", type="pil"), ], clear = gr.Button("Clear"), outputs=gr.outputs.Label(), title="Image Classifier", description=description clear.click(lambda: None, None, inputs) ).launch()