import torch import gradio as gr from transformers import pipeline device = "cuda" if torch.cuda.is_available() else "cpu" def predict(image): classifier = pipeline(task="image-classification") preds = classifier(image) preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] return preds description = """ """ gr.Interface( fn=predict, inputs=[ gr.components.Image(label="Image to classify", type="pil"), # gr.inputs.Textbox(lines=1, label="Comma separated candidate labels", placeholder="Enter labels separated by ', '",) ], outputs=gr.Textbox(), title="Comparateur d'image", description=description ).launch()