import os import cv2 import torch import numpy as np from torchvision import transforms from PIL import Image from tqdm import tqdm from training.detectors import DETECTOR import yaml import gradio as gr device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # available models in the repository AVAILABLE_MODELS = [ "xception", "ucf", ] # load the model def load_model(model_name, config_path, weights_path): with open(config_path, 'r') as f: config = yaml.safe_load(f) config['model_name'] = model_name model_class = DETECTOR[model_name] model = model_class(config).to(device) checkpoint = torch.load(weights_path, map_location=device) model.load_state_dict(checkpoint, strict=True) model.eval() return model # preprocess a single video def preprocess_video(video_path, output_dir, frame_num=32): os.makedirs(output_dir, exist_ok=True) frames_dir = os.path.join(output_dir, "frames") os.makedirs(frames_dir, exist_ok=True) cap = cv2.VideoCapture(video_path) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) frame_indices = np.linspace(0, total_frames - 1, frame_num, dtype=int) # extract frames frames = [] for idx in frame_indices: cap.set(cv2.CAP_PROP_POS_FRAMES, idx) ret, frame = cap.read() if ret: frame_path = os.path.join(frames_dir, f"frame_{idx:04d}.png") cv2.imwrite(frame_path, frame) frames.append(frame_path) cap.release() return frames # inference on a single video def infer_video(video_path, model, device): # Preprocess the video output_dir = "temp_video_frames" frames = preprocess_video(video_path, output_dir) transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) probs = [] for frame_path in frames: frame = Image.open(frame_path).convert("RGB") frame = transform(frame).unsqueeze(0).to(device) data_dict = { "image": frame, "label": torch.tensor([0]).to(device), # Dummy label "label_spe": torch.tensor([0]).to(device), # Dummy specific label } with torch.no_grad(): pred_dict = model(data_dict, inference=True) logits = pred_dict["cls"] # Shape: [batch_size, num_classes] prob = torch.softmax(logits, dim=1)[:, 1].item() # Probability of being "fake" probs.append(prob) # aggregate predictions (e.g., average probability) avg_prob = np.mean(probs) prediction = "Fake" if avg_prob > 0.5 else "Real" return prediction, avg_prob # gradio inference function def gradio_inference(video, model_name): config_path = f"/teamspace/studios/this_studio/DeepfakeBench/training/config/detector/{model_name}.yaml" weights_path = f"/teamspace/studios/this_studio/DeepfakeBench/training/weights/{model_name}_best.pth" if not os.path.exists(config_path): return f"Error: Config file for model '{model_name}' not found at {config_path}." if not os.path.exists(weights_path): return f"Error: Weights file for model '{model_name}' not found at {weights_path}." model = load_model(model_name, config_path, weights_path) prediction, confidence = infer_video(video, model, device) return f"Model: {model_name}\nPrediction: {prediction} (Confidence: {confidence:.4f})" # Gradio App def create_gradio_app(): with gr.Blocks() as demo: gr.Markdown("# Deepfake Detection Demo") gr.Markdown("Upload a video and select a model to detect if it's real or fake.") with gr.Row(): video_input = gr.Video(label="Upload Video") model_dropdown = gr.Dropdown(choices=AVAILABLE_MODELS, label="Select Model", value="xception") output_text = gr.Textbox(label="Prediction Result") submit_button = gr.Button("Run Inference") submit_button.click( fn=gradio_inference, inputs=[video_input, model_dropdown], outputs=output_text, ) return demo if __name__ == "__main__": demo = create_gradio_app() demo.launch(share=True)