import torch import random from TTS.tts.models.xtts import load_audio torch.set_num_threads(1) def key_samples_by_col(samples, col): """Returns a dictionary of samples keyed by language.""" samples_by_col = {} for sample in samples: col_val = sample[col] assert isinstance(col_val, str) if col_val not in samples_by_col: samples_by_col[col_val] = [] samples_by_col[col_val].append(sample) return samples_by_col class DVAEDataset(torch.utils.data.Dataset): def __init__(self, samples, sample_rate, is_eval): self.sample_rate = sample_rate self.is_eval = is_eval self.max_wav_len = 255995 self.samples = samples self.training_seed = 1 self.failed_samples = set() if not is_eval: random.seed(self.training_seed) # random.shuffle(self.samples) random.shuffle(self.samples) # order by language self.samples = key_samples_by_col(self.samples, "language") print(" > Sampling by language:", self.samples.keys()) else: # for evaluation load and check samples that are corrupted to ensures the reproducibility self.check_eval_samples() def check_eval_samples(self): print(" > Filtering invalid eval samples!!") new_samples = [] for sample in self.samples: try: _, wav = self.load_item(sample) except: continue # Basically, this audio file is nonexistent or too long to be supported by the dataset. if ( wav is None or (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) ): continue new_samples.append(sample) self.samples = new_samples print(" > Total eval samples after filtering:", len(self.samples)) def load_item(self, sample): audiopath = sample["audio_file"] wav = load_audio(audiopath, self.sample_rate) if wav is None or wav.shape[-1] < (0.5 * self.sample_rate): # Ultra short clips are also useless (and can cause problems within some models). raise ValueError return audiopath, wav def __getitem__(self, index): if self.is_eval: sample = self.samples[index] sample_id = str(index) else: # select a random language lang = random.choice(list(self.samples.keys())) # select random sample index = random.randint(0, len(self.samples[lang]) - 1) sample = self.samples[lang][index] # a unique id for each sampel to deal with fails sample_id = lang + "_" + str(index) # ignore samples that we already know that is not valid ones if sample_id in self.failed_samples: # call get item again to get other sample return self[1] # try to load the sample, if fails added it to the failed samples list try: audiopath, wav = self.load_item(sample) except: self.failed_samples.add(sample_id) return self[1] # check if the audio and text size limits and if it out of the limits, added it failed_samples if ( wav is None or (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) ): # Basically, this audio file is nonexistent or too long to be supported by the dataset. # It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result. self.failed_samples.add(sample_id) return self[1] res = { "wav": wav, "wav_lengths": torch.tensor(wav.shape[-1], dtype=torch.long), "filenames": audiopath, } return res def __len__(self): if self.is_eval: return len(self.samples) return sum([len(v) for v in self.samples.values()]) def collate_fn(self, batch): # convert list of dicts to dict of lists B = len(batch) batch = {k: [dic[k] for dic in batch] for k in batch[0]} # stack for features that already have the same shape batch["wav_lengths"] = torch.stack(batch["wav_lengths"]) max_wav_len = batch["wav_lengths"].max() # create padding tensors wav_padded = torch.FloatTensor(B, 1, max_wav_len) # initialize tensors for zero padding wav_padded = wav_padded.zero_() for i in range(B): wav = batch["wav"][i] wav_padded[i, :, : batch["wav_lengths"][i]] = torch.FloatTensor(wav) batch["wav"] = wav_padded return batch