import torch import spaces from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer import os from huggingface_hub import login max_length = 512 auth_token = os.getenv('HF_SPACE_TOKEN') login(token=auth_token) @spaces.GPU def goai_traduction(text, src_lang, tgt_lang): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if src_lang == "fra_Latn" and tgt_lang == "mos_Latn": model_id = "ArissBandoss/nllb-200-distilled-600M-finetuned-fr-to-mos-V4" elif src_lang == "mos_Latn" and tgt_lang == "fra_Latn": model_id = "ArissBandoss/nllb-200-distilled-600M-finetuned-mos-to-fr-V5" else: model_id = "ArissBandoss/nllb-200-distilled-600M-finetuned-fr-to-mos-V4" tokenizer = AutoTokenizer.from_pretrained(model_id, token=auth_token) model = AutoModelForSeq2SeqLM.from_pretrained(model_id, token=auth_token) trans_pipe = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang, max_length=max_length, device=device ) return trans_pipe(text)[0]["translation_text"] def real_time_traduction(input_text, src_lang, tgt_lang): return goai_traduction(input_text, src_lang, tgt_lang)