import os import math import gradio as gr import numpy as np import torch import safetensors.torch as sf import db_examples import datetime from pathlib import Path from io import BytesIO from PIL import Image from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler from diffusers.models.attention_processor import AttnProcessor2_0 from transformers import CLIPTextModel, CLIPTokenizer from briarmbg import BriaRMBG from enum import Enum from torch.hub import download_url_to_file from torch.hub import download_url_to_file import cv2 from typing import Optional from Depth.depth_anything_v2.dpt import DepthAnythingV2 # from FLORENCE import spaces import supervision as sv import torch from PIL import Image from utils.sam import load_sam_image_model, run_sam_inference try: import xformers import xformers.ops XFORMERS_AVAILABLE = True print("xformers is available - Using memory efficient attention") except ImportError: XFORMERS_AVAILABLE = False print("xformers not available - Using default attention") # Memory optimizations for RTX 2070 torch.backends.cudnn.benchmark = True if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True # Set a smaller attention slice size for RTX 2070 torch.backends.cuda.max_split_size_mb = 512 device = torch.device('cuda') else: device = torch.device('cpu') # 'stablediffusionapi/realistic-vision-v51' # 'runwayml/stable-diffusion-v1-5' sd15_name = 'stablediffusionapi/realistic-vision-v51' tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer") text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder") vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae") unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet") rmbg = BriaRMBG.from_pretrained("briaai/RMBG-1.4") model = DepthAnythingV2(encoder='vits', features=64, out_channels=[48, 96, 192, 384]) model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vits.pth', map_location=device)) model = model.to(device) model.eval() # Change UNet with torch.no_grad(): new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding) new_conv_in.weight.zero_() new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight) new_conv_in.bias = unet.conv_in.bias unet.conv_in = new_conv_in unet_original_forward = unet.forward def enable_efficient_attention(): if XFORMERS_AVAILABLE: try: # RTX 2070 specific settings unet.set_use_memory_efficient_attention_xformers(True) vae.set_use_memory_efficient_attention_xformers(True) print("Enabled xformers memory efficient attention") except Exception as e: print(f"Xformers error: {e}") print("Falling back to sliced attention") # Use sliced attention for RTX 2070 unet.set_attention_slice_size(4) vae.set_attention_slice_size(4) unet.set_attn_processor(AttnProcessor2_0()) vae.set_attn_processor(AttnProcessor2_0()) else: # Fallback for when xformers is not available print("Using sliced attention") unet.set_attention_slice_size(4) vae.set_attention_slice_size(4) unet.set_attn_processor(AttnProcessor2_0()) vae.set_attn_processor(AttnProcessor2_0()) # Add memory clearing function def clear_memory(): if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.synchronize() # Enable efficient attention enable_efficient_attention() def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs): c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample) c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0) new_sample = torch.cat([sample, c_concat], dim=1) kwargs['cross_attention_kwargs'] = {} return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs) unet.forward = hooked_unet_forward # Load model_path = './models/iclight_sd15_fc.safetensors' # model_path = './models/iclight_sd15_fbc.safetensors' if not os.path.exists(model_path): download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors', dst=model_path) sd_offset = sf.load_file(model_path) sd_origin = unet.state_dict() keys = sd_origin.keys() sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()} unet.load_state_dict(sd_merged, strict=True) del sd_offset, sd_origin, sd_merged, keys # Device # device = torch.device('cuda') # text_encoder = text_encoder.to(device=device, dtype=torch.float16) # vae = vae.to(device=device, dtype=torch.bfloat16) # unet = unet.to(device=device, dtype=torch.float16) # rmbg = rmbg.to(device=device, dtype=torch.float32) # Device and dtype setup device = torch.device('cuda') dtype = torch.float16 # RTX 2070 works well with float16 # Memory optimizations for RTX 2070 torch.backends.cudnn.benchmark = True if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True # Set a very small attention slice size for RTX 2070 to avoid OOM torch.backends.cuda.max_split_size_mb = 128 # Move models to device with consistent dtype text_encoder = text_encoder.to(device=device, dtype=dtype) vae = vae.to(device=device, dtype=dtype) # Changed from bfloat16 to float16 unet = unet.to(device=device, dtype=dtype) rmbg = rmbg.to(device=device, dtype=torch.float32) # Keep this as float32 ddim_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, steps_offset=1, ) euler_a_scheduler = EulerAncestralDiscreteScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, steps_offset=1 ) dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, algorithm_type="sde-dpmsolver++", use_karras_sigmas=True, steps_offset=1 ) # Pipelines t2i_pipe = StableDiffusionPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=dpmpp_2m_sde_karras_scheduler, safety_checker=None, requires_safety_checker=False, feature_extractor=None, image_encoder=None ) i2i_pipe = StableDiffusionImg2ImgPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=dpmpp_2m_sde_karras_scheduler, safety_checker=None, requires_safety_checker=False, feature_extractor=None, image_encoder=None ) @torch.inference_mode() def encode_prompt_inner(txt: str): max_length = tokenizer.model_max_length chunk_length = tokenizer.model_max_length - 2 id_start = tokenizer.bos_token_id id_end = tokenizer.eos_token_id id_pad = id_end def pad(x, p, i): return x[:i] if len(x) >= i else x + [p] * (i - len(x)) tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"] chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)] chunks = [pad(ck, id_pad, max_length) for ck in chunks] token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64) conds = text_encoder(token_ids).last_hidden_state return conds @torch.inference_mode() def encode_prompt_pair(positive_prompt, negative_prompt): c = encode_prompt_inner(positive_prompt) uc = encode_prompt_inner(negative_prompt) c_len = float(len(c)) uc_len = float(len(uc)) max_count = max(c_len, uc_len) c_repeat = int(math.ceil(max_count / c_len)) uc_repeat = int(math.ceil(max_count / uc_len)) max_chunk = max(len(c), len(uc)) c = torch.cat([c] * c_repeat, dim=0)[:max_chunk] uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk] c = torch.cat([p[None, ...] for p in c], dim=1) uc = torch.cat([p[None, ...] for p in uc], dim=1) return c, uc @torch.inference_mode() def pytorch2numpy(imgs, quant=True): results = [] for x in imgs: y = x.movedim(0, -1) if quant: y = y * 127.5 + 127.5 y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) else: y = y * 0.5 + 0.5 y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32) results.append(y) return results @torch.inference_mode() def numpy2pytorch(imgs): h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 # so that 127 must be strictly 0.0 h = h.movedim(-1, 1) return h def resize_and_center_crop(image, target_width, target_height): pil_image = Image.fromarray(image) original_width, original_height = pil_image.size scale_factor = max(target_width / original_width, target_height / original_height) resized_width = int(round(original_width * scale_factor)) resized_height = int(round(original_height * scale_factor)) resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS) left = (resized_width - target_width) / 2 top = (resized_height - target_height) / 2 right = (resized_width + target_width) / 2 bottom = (resized_height + target_height) / 2 cropped_image = resized_image.crop((left, top, right, bottom)) return np.array(cropped_image) def resize_without_crop(image, target_width, target_height): pil_image = Image.fromarray(image) resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) return np.array(resized_image) @torch.inference_mode() def run_rmbg(img, sigma=0.0): # Convert RGBA to RGB if needed if img.shape[-1] == 4: # Use white background for alpha composition alpha = img[..., 3:] / 255.0 rgb = img[..., :3] white_bg = np.ones_like(rgb) * 255 img = (rgb * alpha + white_bg * (1 - alpha)).astype(np.uint8) H, W, C = img.shape assert C == 3 k = (256.0 / float(H * W)) ** 0.5 feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k))) feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32) alpha = rmbg(feed)[0][0] alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear") alpha = alpha.movedim(1, -1)[0] alpha = alpha.detach().float().cpu().numpy().clip(0, 1) # Create RGBA image rgba = np.dstack((img, alpha * 255)).astype(np.uint8) result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha return result.clip(0, 255).astype(np.uint8), rgba @torch.inference_mode() def process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source): clear_memory() # Get input dimensions input_height, input_width = input_fg.shape[:2] bg_source = BGSource(bg_source) if bg_source == BGSource.UPLOAD: pass elif bg_source == BGSource.UPLOAD_FLIP: input_bg = np.fliplr(input_bg) elif bg_source == BGSource.GREY: input_bg = np.zeros(shape=(input_height, input_width, 3), dtype=np.uint8) + 64 elif bg_source == BGSource.LEFT: gradient = np.linspace(255, 0, input_width) image = np.tile(gradient, (input_height, 1)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) elif bg_source == BGSource.RIGHT: gradient = np.linspace(0, 255, input_width) image = np.tile(gradient, (input_height, 1)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) elif bg_source == BGSource.TOP: gradient = np.linspace(255, 0, input_height)[:, None] image = np.tile(gradient, (1, input_width)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) elif bg_source == BGSource.BOTTOM: gradient = np.linspace(0, 255, input_height)[:, None] image = np.tile(gradient, (1, input_width)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) else: raise 'Wrong initial latent!' rng = torch.Generator(device=device).manual_seed(int(seed)) # Use input dimensions directly fg = resize_without_crop(input_fg, input_width, input_height) concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype) concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt) if input_bg is None: latents = t2i_pipe( prompt_embeds=conds, negative_prompt_embeds=unconds, width=input_width, height=input_height, num_inference_steps=steps, num_images_per_prompt=num_samples, generator=rng, output_type='latent', guidance_scale=cfg, cross_attention_kwargs={'concat_conds': concat_conds}, ).images.to(vae.dtype) / vae.config.scaling_factor else: bg = resize_without_crop(input_bg, input_width, input_height) bg_latent = numpy2pytorch([bg]).to(device=vae.device, dtype=vae.dtype) bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor latents = i2i_pipe( image=bg_latent, strength=lowres_denoise, prompt_embeds=conds, negative_prompt_embeds=unconds, width=input_width, height=input_height, num_inference_steps=int(round(steps / lowres_denoise)), num_images_per_prompt=num_samples, generator=rng, output_type='latent', guidance_scale=cfg, cross_attention_kwargs={'concat_conds': concat_conds}, ).images.to(vae.dtype) / vae.config.scaling_factor pixels = vae.decode(latents).sample pixels = pytorch2numpy(pixels) pixels = [resize_without_crop( image=p, target_width=int(round(input_width * highres_scale / 64.0) * 64), target_height=int(round(input_height * highres_scale / 64.0) * 64)) for p in pixels] pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype) latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor latents = latents.to(device=unet.device, dtype=unet.dtype) highres_height, highres_width = latents.shape[2] * 8, latents.shape[3] * 8 fg = resize_without_crop(input_fg, highres_width, highres_height) concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype) concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor latents = i2i_pipe( image=latents, strength=highres_denoise, prompt_embeds=conds, negative_prompt_embeds=unconds, width=highres_width, height=highres_height, num_inference_steps=int(round(steps / highres_denoise)), num_images_per_prompt=num_samples, generator=rng, output_type='latent', guidance_scale=cfg, cross_attention_kwargs={'concat_conds': concat_conds}, ).images.to(vae.dtype) / vae.config.scaling_factor pixels = vae.decode(latents).sample pixels = pytorch2numpy(pixels) # Resize back to input dimensions pixels = [resize_without_crop(p, input_width, input_height) for p in pixels] pixels = np.stack(pixels) return pixels @torch.inference_mode() def process_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source): clear_memory() bg_source = BGSource(bg_source) if bg_source == BGSource.UPLOAD: pass elif bg_source == BGSource.UPLOAD_FLIP: input_bg = np.fliplr(input_bg) elif bg_source == BGSource.GREY: input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64 elif bg_source == BGSource.LEFT: gradient = np.linspace(224, 32, image_width) image = np.tile(gradient, (image_height, 1)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) elif bg_source == BGSource.RIGHT: gradient = np.linspace(32, 224, image_width) image = np.tile(gradient, (image_height, 1)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) elif bg_source == BGSource.TOP: gradient = np.linspace(224, 32, image_height)[:, None] image = np.tile(gradient, (1, image_width)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) elif bg_source == BGSource.BOTTOM: gradient = np.linspace(32, 224, image_height)[:, None] image = np.tile(gradient, (1, image_width)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) else: raise 'Wrong background source!' rng = torch.Generator(device=device).manual_seed(seed) fg = resize_and_center_crop(input_fg, image_width, image_height) bg = resize_and_center_crop(input_bg, image_width, image_height) concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype) concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1) conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt) latents = t2i_pipe( prompt_embeds=conds, negative_prompt_embeds=unconds, width=image_width, height=image_height, num_inference_steps=steps, num_images_per_prompt=num_samples, generator=rng, output_type='latent', guidance_scale=cfg, cross_attention_kwargs={'concat_conds': concat_conds}, ).images.to(vae.dtype) / vae.config.scaling_factor pixels = vae.decode(latents).sample pixels = pytorch2numpy(pixels) pixels = [resize_without_crop( image=p, target_width=int(round(image_width * highres_scale / 64.0) * 64), target_height=int(round(image_height * highres_scale / 64.0) * 64)) for p in pixels] pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype) latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor latents = latents.to(device=unet.device, dtype=unet.dtype) image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8 fg = resize_and_center_crop(input_fg, image_width, image_height) bg = resize_and_center_crop(input_bg, image_width, image_height) concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype) concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1) latents = i2i_pipe( image=latents, strength=highres_denoise, prompt_embeds=conds, negative_prompt_embeds=unconds, width=image_width, height=image_height, num_inference_steps=int(round(steps / highres_denoise)), num_images_per_prompt=num_samples, generator=rng, output_type='latent', guidance_scale=cfg, cross_attention_kwargs={'concat_conds': concat_conds}, ).images.to(vae.dtype) / vae.config.scaling_factor pixels = vae.decode(latents).sample pixels = pytorch2numpy(pixels, quant=False) clear_memory() return pixels, [fg, bg] @torch.inference_mode() def process_relight(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source): input_fg, matting = run_rmbg(input_fg) results = process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source) return input_fg, results @torch.inference_mode() def process_relight_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source): bg_source = BGSource(bg_source) # Convert numerical inputs to appropriate types image_width = int(image_width) image_height = int(image_height) num_samples = int(num_samples) seed = int(seed) steps = int(steps) cfg = float(cfg) highres_scale = float(highres_scale) highres_denoise = float(highres_denoise) if bg_source == BGSource.UPLOAD: pass elif bg_source == BGSource.UPLOAD_FLIP: input_bg = np.fliplr(input_bg) elif bg_source == BGSource.GREY: input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64 elif bg_source == BGSource.LEFT: gradient = np.linspace(224, 32, image_width) image = np.tile(gradient, (image_height, 1)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) elif bg_source == BGSource.RIGHT: gradient = np.linspace(32, 224, image_width) image = np.tile(gradient, (image_height, 1)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) elif bg_source == BGSource.TOP: gradient = np.linspace(224, 32, image_height)[:, None] image = np.tile(gradient, (1, image_width)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) elif bg_source == BGSource.BOTTOM: gradient = np.linspace(32, 224, image_height)[:, None] image = np.tile(gradient, (1, image_width)) input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) else: raise ValueError('Wrong background source!') input_fg, matting = run_rmbg(input_fg) results, extra_images = process_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source) results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results] final_results = results + extra_images # Save the generated images save_images(results, prefix="relight") return results quick_prompts = [ 'sunshine from window', 'neon light, city', 'sunset over sea', 'golden time', 'sci-fi RGB glowing, cyberpunk', 'natural lighting', 'warm atmosphere, at home, bedroom', 'magic lit', 'evil, gothic, Yharnam', 'light and shadow', 'shadow from window', 'soft studio lighting', 'home atmosphere, cozy bedroom illumination', 'neon, Wong Kar-wai, warm' ] quick_prompts = [[x] for x in quick_prompts] quick_subjects = [ 'modern sofa, high quality leather', 'elegant dining table, polished wood', 'luxurious bed, premium mattress', 'minimalist office desk, clean design', 'vintage wooden cabinet, antique finish', ] quick_subjects = [[x] for x in quick_subjects] class BGSource(Enum): UPLOAD = "Use Background Image" UPLOAD_FLIP = "Use Flipped Background Image" LEFT = "Left Light" RIGHT = "Right Light" TOP = "Top Light" BOTTOM = "Bottom Light" GREY = "Ambient" # Add save function def save_images(images, prefix="relight"): # Create output directory if it doesn't exist output_dir = Path("outputs") output_dir.mkdir(exist_ok=True) # Create timestamp for unique filenames timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") saved_paths = [] for i, img in enumerate(images): if isinstance(img, np.ndarray): # Convert to PIL Image if numpy array img = Image.fromarray(img) # Create filename with timestamp filename = f"{prefix}_{timestamp}_{i+1}.png" filepath = output_dir / filename # Save image img.save(filepath) # print(f"Saved {len(saved_paths)} images to {output_dir}") return saved_paths class MaskMover: def __init__(self): self.extracted_fg = None self.original_fg = None # Store original foreground def set_extracted_fg(self, fg_image): """Store the extracted foreground with alpha channel""" if isinstance(fg_image, np.ndarray): self.extracted_fg = fg_image.copy() self.original_fg = fg_image.copy() else: self.extracted_fg = np.array(fg_image) self.original_fg = np.array(fg_image) return self.extracted_fg def create_composite(self, background, x_pos, y_pos, scale=1.0): """Create composite with foreground at specified position""" if self.original_fg is None or background is None: return background # Convert inputs to PIL Images if isinstance(background, np.ndarray): bg = Image.fromarray(background).convert('RGBA') else: bg = background.convert('RGBA') if isinstance(self.original_fg, np.ndarray): fg = Image.fromarray(self.original_fg).convert('RGBA') else: fg = self.original_fg.convert('RGBA') # Scale the foreground size new_width = int(fg.width * scale) new_height = int(fg.height * scale) fg = fg.resize((new_width, new_height), Image.LANCZOS) # Center the scaled foreground at the position x = int(x_pos - new_width / 2) y = int(y_pos - new_height / 2) # Create composite result = bg.copy() result.paste(fg, (x, y), fg) # Use fg as the mask (requires fg to be in 'RGBA' mode) return np.array(result.convert('RGB')) # Convert back to 'RGB' if needed def get_depth(image): if image is None: return None # Convert from PIL/gradio format to cv2 raw_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # Get depth map depth = model.infer_image(raw_img) # HxW raw depth map # Normalize depth for visualization depth = ((depth - depth.min()) / (depth.max() - depth.min()) * 255).astype(np.uint8) # Convert to RGB for display depth_colored = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO) depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB) return Image.fromarray(depth_colored) from PIL import Image def compress_image(image): # Convert Gradio image (numpy array) to PIL Image img = Image.fromarray(image) # Resize image if dimensions are too large max_size = 1024 # Maximum dimension size if img.width > max_size or img.height > max_size: ratio = min(max_size/img.width, max_size/img.height) new_size = (int(img.width * ratio), int(img.height * ratio)) img = img.resize(new_size, Image.Resampling.LANCZOS) quality = 95 # Start with high quality img.save("compressed_image.jpg", "JPEG", quality=quality) # Initial save # Check file size and adjust quality if necessary while os.path.getsize("compressed_image.jpg") > 100 * 1024: # 100KB limit quality -= 5 # Decrease quality img.save("compressed_image.jpg", "JPEG", quality=quality) if quality < 20: # Prevent quality from going too low break # Convert back to numpy array for Gradio compressed_img = np.array(Image.open("compressed_image.jpg")) return compressed_img block = gr.Blocks().queue() with block: with gr.Tab("Text"): with gr.Row(): gr.Markdown("## Product Placement from Text") with gr.Row(): with gr.Column(): with gr.Row(): input_fg = gr.Image(type="numpy", label="Image", height=480) output_bg = gr.Image(type="numpy", label="Preprocessed Foreground", height=480) with gr.Group(): prompt = gr.Textbox(label="Prompt") bg_source = gr.Radio(choices=[e.value for e in BGSource], value=BGSource.GREY.value, label="Lighting Preference (Initial Latent)", type='value') example_quick_subjects = gr.Dataset(samples=quick_subjects, label='Subject Quick List', samples_per_page=1000, components=[prompt]) example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Lighting Quick List', samples_per_page=1000, components=[prompt]) relight_button = gr.Button(value="Relight") with gr.Group(): with gr.Row(): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) seed = gr.Number(label="Seed", value=12345, precision=0) with gr.Row(): image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64) image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64) with gr.Accordion("Advanced options", open=False): steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=15, step=1) cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=2, step=0.01) lowres_denoise = gr.Slider(label="Lowres Denoise (for initial latent)", minimum=0.1, maximum=1.0, value=0.9, step=0.01) highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=3.0, value=1.5, step=0.01) highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=1.0, value=0.5, step=0.01) a_prompt = gr.Textbox(label="Added Prompt", value='best quality') n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality') with gr.Column(): result_gallery = gr.Gallery(height=832, object_fit='contain', label='Outputs') with gr.Row(): dummy_image_for_outputs = gr.Image(visible=False, label='Result') # gr.Examples( # fn=lambda *args: ([args[-1]], None), # examples=db_examples.foreground_conditioned_examples, # inputs=[ # input_fg, prompt, bg_source, image_width, image_height, seed, dummy_image_for_outputs # ], # outputs=[result_gallery, output_bg], # run_on_click=True, examples_per_page=1024 # ) ips = [input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source] relight_button.click(fn=process_relight, inputs=ips, outputs=[output_bg, result_gallery]) example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False) example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False) with gr.Tab("Background", visible=False): mask_mover = MaskMover() with gr.Row(): gr.Markdown("## IC-Light (Relighting with Foreground and Background Condition)") gr.Markdown("💾 Generated images are automatically saved to 'outputs' folder") with gr.Row(): with gr.Column(): # Step 1: Input and Extract with gr.Row(): with gr.Group(): gr.Markdown("### Step 1: Extract Foreground") input_image = gr.Image(type="numpy", label="Input Image", height=480) # find_objects_button = gr.Button(value="Find Objects") extract_button = gr.Button(value="Remove Background") extracted_fg = gr.Image(type="numpy", label="Extracted Foreground", height=480) with gr.Row(): # Step 2: Background and Position with gr.Group(): gr.Markdown("### Step 2: Position on Background") input_bg = gr.Image(type="numpy", label="Background Image", height=480) with gr.Row(): x_slider = gr.Slider( minimum=0, maximum=1000, label="X Position", value=500, visible=False ) y_slider = gr.Slider( minimum=0, maximum=1000, label="Y Position", value=500, visible=False ) fg_scale_slider = gr.Slider( label="Foreground Scale", minimum=0.01, maximum=3.0, value=1.0, step=0.01 ) editor = gr.ImageEditor( type="numpy", label="Position Foreground", height=480, visible=False ) get_depth_button = gr.Button(value="Get Depth") depth_image = gr.Image(type="numpy", label="Depth Image", height=480) # Step 3: Relighting Options with gr.Group(): gr.Markdown("### Step 3: Relighting Settings") prompt = gr.Textbox(label="Prompt") bg_source = gr.Radio( choices=[e.value for e in BGSource], value=BGSource.UPLOAD.value, label="Background Source", type='value' ) example_prompts = gr.Dataset( samples=quick_prompts, label='Prompt Quick List', components=[prompt] ) # bg_gallery = gr.Gallery( # height=450, # label='Background Quick List', # value=db_examples.bg_samples, # columns=5, # allow_preview=False # ) relight_button_bg = gr.Button(value="Relight") # Additional settings with gr.Group(): with gr.Row(): num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) seed = gr.Number(label="Seed", value=12345, precision=0) with gr.Row(): image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64) image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64) with gr.Accordion("Advanced options", open=False): steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=7.0, step=0.01) highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=2.0, value=1.2, step=0.01) highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.01) a_prompt = gr.Textbox(label="Added Prompt", value='best quality') n_prompt = gr.Textbox( label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality' ) with gr.Column(): result_gallery = gr.Image(height=832, label='Outputs') def extract_foreground(image): if image is None: return None, gr.update(visible=True), gr.update(visible=True) result, rgba = run_rmbg(image) mask_mover.set_extracted_fg(rgba) return result, gr.update(visible=True), gr.update(visible=True) original_bg = None extract_button.click( fn=extract_foreground, inputs=[input_image], outputs=[extracted_fg, x_slider, y_slider] ) # find_objects_button.click( # fn=find_objects, # inputs=[input_image], # outputs=[extracted_fg] # ) get_depth_button.click( fn=get_depth, inputs=[input_bg], outputs=[depth_image] ) # def update_position(background, x_pos, y_pos, scale): # """Update composite when position changes""" # global original_bg # if background is None: # return None # if original_bg is None: # original_bg = background.copy() # # Convert string values to float # x_pos = float(x_pos) # y_pos = float(y_pos) # scale = float(scale) # return mask_mover.create_composite(original_bg, x_pos, y_pos, scale) class BackgroundManager: def __init__(self): self.original_bg = None def update_position(self, background, x_pos, y_pos, scale): """Update composite when position changes""" if background is None: return None if self.original_bg is None: self.original_bg = background.copy() # Convert string values to float x_pos = float(x_pos) y_pos = float(y_pos) scale = float(scale) return mask_mover.create_composite(self.original_bg, x_pos, y_pos, scale) # Create an instance of BackgroundManager bg_manager = BackgroundManager() x_slider.change( fn=lambda bg, x, y, scale: bg_manager.update_position(bg, x, y, scale), inputs=[input_bg, x_slider, y_slider, fg_scale_slider], outputs=[input_bg] ) y_slider.change( fn=lambda bg, x, y, scale: bg_manager.update_position(bg, x, y, scale), inputs=[input_bg, x_slider, y_slider, fg_scale_slider], outputs=[input_bg] ) fg_scale_slider.change( fn=lambda bg, x, y, scale: bg_manager.update_position(bg, x, y, scale), inputs=[input_bg, x_slider, y_slider, fg_scale_slider], outputs=[input_bg] ) # Update inputs list to include fg_scale_slider def process_relight_with_position(*args): if mask_mover.extracted_fg is None: gr.Warning("Please extract foreground first") return None background = args[1] # Get background image x_pos = float(args[-3]) # x_slider value y_pos = float(args[-2]) # y_slider value scale = float(args[-1]) # fg_scale_slider value # Get original foreground size after scaling fg = Image.fromarray(mask_mover.original_fg) new_width = int(fg.width * scale) new_height = int(fg.height * scale) # Calculate crop region around foreground position crop_x = int(x_pos - new_width/2) crop_y = int(y_pos - new_height/2) crop_width = new_width crop_height = new_height # Add padding for context (20% extra on each side) padding = 0.2 crop_x = int(crop_x - crop_width * padding) crop_y = int(crop_y - crop_height * padding) crop_width = int(crop_width * (1 + 2 * padding)) crop_height = int(crop_height * (1 + 2 * padding)) # Ensure crop dimensions are multiples of 8 crop_width = ((crop_width + 7) // 8) * 8 crop_height = ((crop_height + 7) // 8) * 8 # Ensure crop region is within image bounds bg_height, bg_width = background.shape[:2] crop_x = max(0, min(crop_x, bg_width - crop_width)) crop_y = max(0, min(crop_y, bg_height - crop_height)) # Get actual crop dimensions after boundary check crop_width = min(crop_width, bg_width - crop_x) crop_height = min(crop_height, bg_height - crop_y) # Ensure dimensions are multiples of 8 again crop_width = (crop_width // 8) * 8 crop_height = (crop_height // 8) * 8 # Crop region from background crop_region = background[crop_y:crop_y+crop_height, crop_x:crop_x+crop_width] # Create composite in cropped region fg_local_x = int(new_width/2 + crop_width*padding) fg_local_y = int(new_height/2 + crop_height*padding) cropped_composite = mask_mover.create_composite(crop_region, fg_local_x, fg_local_y, scale) # Process the cropped region crop_args = list(args) crop_args[0] = cropped_composite crop_args[1] = crop_region crop_args[3] = crop_width crop_args[4] = crop_height crop_args = crop_args[:-3] # Remove position and scale arguments # Get relit result relit_crop = process_relight_bg(*crop_args)[0] # Resize relit result to match crop dimensions if needed if relit_crop.shape[:2] != (crop_height, crop_width): relit_crop = resize_without_crop(relit_crop, crop_width, crop_height) # Place relit crop back into original background result = background.copy() result[crop_y:crop_y+crop_height, crop_x:crop_x+crop_width] = relit_crop return result ips_bg = [input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source] # Update button click events with new inputs list relight_button_bg.click( fn=process_relight_with_position, inputs=ips_bg, outputs=[result_gallery] ) example_prompts.click( fn=lambda x: x[0], inputs=example_prompts, outputs=prompt, show_progress=False, queue=False ) block.launch(server_name='0.0.0.0', share=True)