from openai import OpenAI import anthropic from together import Together import cohere import json import re import os import requests # Initialize clients anthropic_client = anthropic.Anthropic() openai_client = OpenAI() together_client = Together() hf_api_key = os.getenv("HF_API_KEY") cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY")) huggingface_client = OpenAI( base_url="https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud/v1/", api_key=hf_api_key ) JUDGE_SYSTEM_PROMPT = """Please act as an impartial judge and evaluate based on the user's instruction. Your output format should strictly adhere to JSON as follows: {"feedback": "", "result": }. Ensure the output is valid JSON, without additional formatting or explanations.""" ALTERNATIVE_JUDGE_SYSTEM_PROMPT = """Please act as an impartial judge and evaluate based on the user's instruction.""" def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0): """Get response from OpenAI API""" try: response = openai_client.chat.completions.create( model=model_name, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ], max_completion_tokens=max_tokens, temperature=temperature, ) return response.choices[0].message.content except Exception as e: return f"Error with OpenAI model {model_name}: {str(e)}" def get_anthropic_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0): """Get response from Anthropic API""" try: response = anthropic_client.messages.create( model=model_name, max_tokens=max_tokens, temperature=temperature, system=system_prompt, messages=[{"role": "user", "content": [{"type": "text", "text": prompt}]}], ) return response.content[0].text except Exception as e: return f"Error with Anthropic model {model_name}: {str(e)}" def get_together_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0): """Get response from Together API""" try: response = together_client.chat.completions.create( model=model_name, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ], max_tokens=max_tokens, temperature=temperature, stream=False, ) return response.choices[0].message.content except Exception as e: return f"Error with Together model {model_name}: {str(e)}" def get_hf_response(model_name, prompt, max_tokens=500): """Get response from Hugging Face model""" try: headers = { "Accept": "application/json", "Authorization": f"Bearer {hf_api_key}", "Content-Type": "application/json" } payload = { "inputs": prompt, "parameters": { "max_new_tokens": max_tokens, "return_full_text": False } } response = requests.post( "https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud", headers=headers, json=payload ) return response.json()[0]["generated_text"] except Exception as e: return f"Error with Hugging Face model {model_name}: {str(e)}" def get_cohere_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0): """Get response from Cohere API""" try: response = cohere_client.chat( model=model_name, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt} ], max_tokens=max_tokens, temperature=temperature ) # Extract the text from the content items content_items = response.message.content if isinstance(content_items, list): # Get the text from the first content item return content_items[0].text return str(content_items) # Fallback if it's not a list except Exception as e: return f"Error with Cohere model {model_name}: {str(e)}" def get_model_response( model_name, model_info, prompt, use_alternative_prompt=False, max_tokens=500, temperature=0 ): """Get response from appropriate API based on model organization""" if not model_info: return "Model not found or unsupported." api_model = model_info["api_model"] organization = model_info["organization"] # Select the appropriate system prompt if use_alternative_prompt: system_prompt = ALTERNATIVE_JUDGE_SYSTEM_PROMPT else: system_prompt = JUDGE_SYSTEM_PROMPT try: if organization == "OpenAI": return get_openai_response( api_model, prompt, system_prompt, max_tokens, temperature ) elif organization == "Anthropic": return get_anthropic_response( api_model, prompt, system_prompt, max_tokens, temperature ) elif organization == "Prometheus": return get_hf_response( api_model, prompt, max_tokens ) elif organization == "Cohere": return get_cohere_response( api_model, prompt, system_prompt, max_tokens, temperature ) else: # All other organizations use Together API return get_together_response( api_model, prompt, system_prompt, max_tokens, temperature ) except Exception as e: return f"Error with {organization} model {model_name}: {str(e)}" def parse_model_response(response): try: # Debug print print(f"Raw model response: {response}") # First try to parse the entire response as JSON try: data = json.loads(response) return str(data.get("result", "N/A")), data.get("feedback", "N/A") except json.JSONDecodeError: # If that fails (typically for smaller models), try to find JSON within the response json_match = re.search(r"{.*}", response, re.DOTALL) if json_match: data = json.loads(json_match.group(0)) return str(data.get("result", "N/A")), data.get("feedback", "N/A") else: return "Error", f"Invalid response format returned - here is the raw model response: {response}" except Exception as e: # Debug print for error case print(f"Failed to parse response: {str(e)}") return "Error", f"Failed to parse response: {response}" def alternative_parse_model_response(output): try: print(f"Raw model response: {output}") # Remove "Feedback:" prefix if present (case insensitive) output = re.sub(r'^feedback:\s*', '', output.strip(), flags=re.IGNORECASE) # First, try to match the pattern "... [RESULT] X" pattern = r"(.*?)\s*\[RESULT\]\s*[\(\[]?(\d+)[\)\]]?" match = re.search(pattern, output, re.DOTALL | re.IGNORECASE) if match: feedback = match.group(1).strip() score = int(match.group(2)) return str(score), feedback # If no match, try to match "... Score: X" pattern = r"(.*?)\s*(?:Score|Result)\s*:\s*[\(\[]?(\d+)[\)\]]?" match = re.search(pattern, output, re.DOTALL | re.IGNORECASE) if match: feedback = match.group(1).strip() score = int(match.group(2)) return str(score), feedback # Pattern to handle [Score X] at the end pattern = r"(.*?)\s*\[(?:Score|Result)\s*[\(\[]?(\d+)[\)\]]?\]$" match = re.search(pattern, output, re.DOTALL) if match: feedback = match.group(1).strip() score = int(match.group(2)) return str(score), feedback # Final fallback attempt pattern = r"[\(\[]?(\d+)[\)\]]?\s*\]?$" match = re.search(pattern, output) if match: score = int(match.group(1)) feedback = output[:match.start()].rstrip() # Remove any trailing brackets from feedback feedback = re.sub(r'\s*\[[^\]]*$', '', feedback).strip() return str(score), feedback return "Error", f"Failed to parse response: {output}" except Exception as e: print(f"Failed to parse response: {str(e)}") return "Error", f"Exception during parsing: {str(e)}"