import gradio as gr import torch import json import yolov7 # Images #torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg') #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg') model_path = "kadirnar/yolov7-v0.1" #"kadirnar/yolov7-tiny-v0.1" image_size = 640 conf_threshold = 0.25 iou_threshold = 0.45 def yolov7_inference( image: gr.inputs.Image = None, #model_path: gr.inputs.Dropdown = None, #image_size: gr.inputs.Slider = 640, #conf_threshold: gr.inputs.Slider = 0.25, #iou_threshold: gr.inputs.Slider = 0.45, ): """ YOLOv7 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False) model.conf = conf_threshold model.iou = iou_threshold results = model([image], size=image_size) tensor = { "tensorflow": [ ] } if results.pred is not None: for i, element in enumerate(results.pred[0]): object = {} #print (element[0]) itemclass = round(element[5].item()) object["classe"] = itemclass object["nome"] = results.names[itemclass] object["score"] = element[4].item() object["x"] = element[0].item() object["y"] = element[1].item() object["w"] = element[2].item() object["h"] = element[3].item() tensor["tensorflow"].append(object) text = json.dumps(tensor) #print (text) return text #results.render()[0] inputs = [ gr.inputs.Image(type="pil", label="Input Image"), ] #outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors" examples = [['small-vehicles1.jpeg'], ['zidane.jpg']] demo_app = gr.Interface( fn=yolov7_inference, inputs=inputs, outputs=["text"], title=title, examples=examples, #cache_examples=True, #theme='huggingface', ) #demo_app.launch(debug=True, server_name="192.168.0.153", server_port=8080, enable_queue=True) #demo_app.launch(debug=True, server_port=8083, enable_queue=True) demo_app.launch(debug=True, enable_queue=True)