from transformers import (CLIPProcessor, CLIPModel, AutoProcessor, CLIPSegForImageSegmentation, OneFormerProcessor, OneFormerForUniversalSegmentation, BlipProcessor, BlipForConditionalGeneration) import torch import mmcv import torch.nn.functional as F import numpy as np import spacy from PIL import Image import pycocotools.mask as maskUtils from models.segment_models.configs.ade20k_id2label import CONFIG as CONFIG_ADE20K_ID2LABEL from models.segment_models.configs.coco_id2label import CONFIG as CONFIG_COCO_ID2LABEL # from mmdet.core.visualization.image import imshow_det_bboxes # comment this line if you don't use mmdet nlp = spacy.load('en_core_web_sm') class SemanticSegment(): def __init__(self, device): self.device = device self.model_init() def model_init(self): self.init_clip() self.init_oneformer_ade20k() self.init_oneformer_coco() self.init_blip() self.init_clipseg() def init_clip(self): model_name = "pretrained_models/clip-vit-large-patch14" self.clip_processor = CLIPProcessor.from_pretrained(model_name) self.clip_model = CLIPModel.from_pretrained(model_name).to(self.device) def init_oneformer_ade20k(self): model_name = "pretrained_models/oneformer_ade20k_swin_large" self.oneformer_ade20k_processor = OneFormerProcessor.from_pretrained(model_name) self.oneformer_ade20k_model = OneFormerForUniversalSegmentation.from_pretrained(model_name).to(self.device) def init_oneformer_coco(self): model_name = "pretrained_models/oneformer_coco_swin_large" self.oneformer_coco_processor = OneFormerProcessor.from_pretrained(model_name) self.oneformer_coco_model = OneFormerForUniversalSegmentation.from_pretrained(model_name).to(self.device) def init_blip(self): model_name = "pretrained_models/blip-image-captioning-large" self.blip_processor = BlipProcessor.from_pretrained(model_name) self.blip_model = BlipForConditionalGeneration.from_pretrained(model_name).to(self.device) def init_clipseg(self): model_name = "pretrained_models/clipseg-rd64-refined" self.clipseg_processor = AutoProcessor.from_pretrained(model_name) self.clipseg_model = CLIPSegForImageSegmentation.from_pretrained(model_name).to(self.device) self.clipseg_processor.image_processor.do_resize = False @staticmethod def get_noun_phrases(text): doc = nlp(text) return [chunk.text for chunk in doc.noun_chunks] def open_vocabulary_classification_blip(self, raw_image): captioning_inputs = self.blip_processor(raw_image, return_tensors="pt").to(self.device) out = self.blip_model.generate(**captioning_inputs) caption = self.blip_processor.decode(out[0], skip_special_tokens=True) return SemanticSegment.get_noun_phrases(caption) def oneformer_segmentation(self, image, processor, model): inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt").to(self.device) outputs = model(**inputs) predicted_semantic_map = processor.post_process_semantic_segmentation( outputs, target_sizes=[image.size[::-1]])[0] return predicted_semantic_map def clip_classification(self, image, class_list, top_k): inputs = self.clip_processor(text=class_list, images=image, return_tensors="pt", padding=True).to(self.device) outputs = self.clip_model(**inputs) logits_per_image = outputs.logits_per_image probs = logits_per_image.softmax(dim=1) if top_k == 1: return class_list[probs.argmax().item()] else: top_k_indices = probs.topk(top_k, dim=1).indices[0] return [class_list[index] for index in top_k_indices] def clipseg_segmentation(self, image, class_list): inputs = self.clipseg_processor( text=class_list, images=[image] * len(class_list), padding=True, return_tensors="pt").to(self.device) h, w = inputs['pixel_values'].shape[-2:] fixed_scale = (512, 512) inputs['pixel_values'] = F.interpolate( inputs['pixel_values'], size=fixed_scale, mode='bilinear', align_corners=False) outputs = self.clipseg_model(**inputs) logits = F.interpolate(outputs.logits[None], size=(h, w), mode='bilinear', align_corners=False)[0] return logits def semantic_class_w_mask(self, img_src, anns, out_file_name="output/test.json", scale_small=1.2, scale_large=1.6): """ generate class name for each mask :param img_src: image path :param anns: coco annotations, the same as return dict besides "class_name" and "class_proposals" :param out_file_name: output file name :param scale_small: scale small :param scale_large: scale large :return: dict('segmentation', 'area', 'bbox', 'predicted_iou', 'point_coords', 'stability_score', 'crop_box', "class_name", "class_proposals"}) """ img = mmcv.imread(img_src) oneformer_coco_seg = self.oneformer_segmentation(Image.fromarray(img), self.oneformer_coco_processor, self.oneformer_coco_model) oneformer_ade20k_seg = self.oneformer_segmentation(Image.fromarray(img), self.oneformer_ade20k_processor, self.oneformer_ade20k_model) bitmasks, class_names = [], [] for ann in anns: # for ann in anns['annotations']: valid_mask = torch.tensor((ann['segmentation'])).bool() # valid_mask = torch.tensor(maskUtils.decode(ann['segmentation'])).bool() coco_propose_classes_ids = oneformer_coco_seg[valid_mask] ade20k_propose_classes_ids = oneformer_ade20k_seg[valid_mask] top_k_coco_propose_classes_ids = torch.bincount(coco_propose_classes_ids.flatten()).topk(1).indices top_k_ade20k_propose_classes_ids = torch.bincount(ade20k_propose_classes_ids.flatten()).topk(1).indices local_class_names = {CONFIG_ADE20K_ID2LABEL['id2label'][str(class_id.item())] for class_id in top_k_ade20k_propose_classes_ids} local_class_names.update({CONFIG_COCO_ID2LABEL['refined_id2label'][str(class_id.item())] for class_id in top_k_coco_propose_classes_ids}) bbox = ann['bbox'] patch_small = mmcv.imcrop(img, np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]), scale=scale_small) patch_large = mmcv.imcrop(img, np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]), scale=scale_large) op_class_list = self.open_vocabulary_classification_blip(patch_large) local_class_list = list(local_class_names.union(op_class_list)) top_k = min(len(local_class_list), 3) mask_categories = self.clip_classification(patch_small, local_class_list, top_k) class_ids_patch_large = self.clipseg_segmentation(patch_large, mask_categories).argmax(0) valid_mask_large_crop = mmcv.imcrop(valid_mask.numpy(), np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]), scale= scale_large) top_1_patch_large = torch.bincount(class_ids_patch_large[torch.tensor(valid_mask_large_crop)].flatten()).topk(1).indices top_1_mask_category = mask_categories[top_1_patch_large.item()] ann['class_name'] = str(top_1_mask_category) ann['class_proposals'] = mask_categories class_names.append(ann['class_name']) # bitmasks.append(maskUtils.decode(ann['segmentation'])) bitmasks.append((ann['segmentation'])) # mmcv.dump(anns, out_file_name) return anns # below for visualization # imshow_det_bboxes(img, # bboxes=None, # labels=np.arange(len(bitmasks)), # segms=np.stack(bitmasks), # class_names=class_names, # font_size=25, # show=False, # out_file='output/result2.png')