import os import gc import gradio as gr import numpy as np import torch import json import spaces import config import utils import logging from PIL import Image, PngImagePlugin from datetime import datetime from diffusers.models import AutoencoderKL from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) DESCRIPTION = "Animagine XL 3.1" if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1" HF_TOKEN = os.getenv("HF_TOKEN") CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512")) MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs") MODEL = os.getenv( "MODEL", "https://huggingface.co/cagliostrolab/animagine-xl-3.1/blob/main/animagine-xl-3.1.safetensors", ) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def load_pipeline(model_name): vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, ) pipeline = ( StableDiffusionXLPipeline.from_single_file if MODEL.endswith(".safetensors") else StableDiffusionXLPipeline.from_pretrained ) pipe = pipeline( model_name, vae=vae, torch_dtype=torch.float16, custom_pipeline="lpw_stable_diffusion_xl", use_safetensors=True, add_watermarker=False, use_auth_token=HF_TOKEN, ) pipe.to(device) return pipe @spaces.GPU def generate( prompt: str, negative_prompt: str = "", seed: int = 0, custom_width: int = 1024, custom_height: int = 1024, guidance_scale: float = 7.0, num_inference_steps: int = 28, sampler: str = "Euler a", aspect_ratio_selector: str = "896 x 1152", style_selector: str = "(None)", quality_selector: str = "Standard v3.1", use_upscaler: bool = False, upscaler_strength: float = 0.55, upscale_by: float = 1.5, add_quality_tags: bool = True, progress=gr.Progress(track_tqdm=True), ): generator = utils.seed_everything(seed) width, height = utils.aspect_ratio_handler( aspect_ratio_selector, custom_width, custom_height, ) prompt = utils.add_wildcard(prompt, wildcard_files) prompt, negative_prompt = utils.preprocess_prompt( quality_prompt, quality_selector, prompt, negative_prompt, add_quality_tags ) prompt, negative_prompt = utils.preprocess_prompt( styles, style_selector, prompt, negative_prompt ) width, height = utils.preprocess_image_dimensions(width, height) backup_scheduler = pipe.scheduler pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler) if use_upscaler: upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components) metadata = { "prompt": prompt, "negative_prompt": negative_prompt, "resolution": f"{width} x {height}", "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "seed": seed, "sampler": sampler, "sdxl_style": style_selector, "add_quality_tags": add_quality_tags, "quality_tags": quality_selector, } if use_upscaler: new_width = int(width * upscale_by) new_height = int(height * upscale_by) metadata["use_upscaler"] = { "upscale_method": "nearest-exact", "upscaler_strength": upscaler_strength, "upscale_by": upscale_by, "new_resolution": f"{new_width} x {new_height}", } else: metadata["use_upscaler"] = None metadata["Model"] = { "Model": DESCRIPTION, "Model hash": "e3c47aedb0", } logger.info(json.dumps(metadata, indent=4)) try: if use_upscaler: latents = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="latent", ).images upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by) images = upscaler_pipe( prompt=prompt, negative_prompt=negative_prompt, image=upscaled_latents, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, strength=upscaler_strength, generator=generator, output_type="pil", ).images else: images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="pil", ).images if images: image_paths = [ utils.save_image(image, metadata, OUTPUT_DIR, IS_COLAB) for image in images ] for image_path in image_paths: logger.info(f"Image saved as {image_path} with metadata") return image_paths, metadata except Exception as e: logger.exception(f"An error occurred: {e}") raise finally: if use_upscaler: del upscaler_pipe pipe.scheduler = backup_scheduler utils.free_memory() if torch.cuda.is_available(): pipe = load_pipeline(MODEL) logger.info("Loaded on Device!") else: pipe = None styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.style_list} quality_prompt = { k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.quality_prompt_list } wildcard_files = utils.load_wildcard_files("wildcard") with gr.Blocks(css="style.css", theme="NoCrypt/miku@1.2.1") as demo: title = gr.HTML( f"""