import gradio as gr import os, gc, copy, torch from datetime import datetime from huggingface_hub import hf_hub_download from pynvml import * nvmlInit() gpu_h = nvmlDeviceGetHandleByIndex(0) ctx_limit = 1024 title = "RWKV-4-Raven-7B-v9-Eng99%-Other1%-20230412-ctx8192" os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster) from rwkv.model import RWKV model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth") model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16') from rwkv.utils import PIPELINE, PIPELINE_ARGS pipeline = PIPELINE(model, "20B_tokenizer.json") def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # Instruction: {instruction} # Input: {input} # Response: """ else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. # Instruction: {instruction} # Response: """ def evaluate( instruction, input=None, token_count=200, temperature=1.0, top_p=0.7, presencePenalty = 0.1, countPenalty = 0.1, ): args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), alpha_frequency = countPenalty, alpha_presence = presencePenalty, token_ban = [], # ban the generation of some tokens token_stop = [0]) # stop generation whenever you see any token here instruction = instruction.strip() input = input.strip() ctx = generate_prompt(instruction, input) gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') all_tokens = [] out_last = 0 out_str = '' occurrence = {} state = None for i in range(int(token_count)): out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) if token in args.token_stop: break all_tokens += [token] if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 gc.collect() torch.cuda.empty_cache() yield out_str.strip() examples = [ ["Tell me about ravens.", "", 150, 1.0, 0.5, 0.4, 0.4], ["Write a python function to mine 1 BTC, with details and comments.", "", 150, 1.0, 0.5, 0.2, 0.2], ["Write a song about ravens.", "", 150, 1.0, 0.5, 0.4, 0.4], ["Explain the following metaphor: Life is like cats.", "", 150, 1.0, 0.5, 0.4, 0.4], ["Write a story using the following information", "A man named Alex chops a tree down", 150, 1.0, 0.5, 0.4, 0.4], ["Generate a list of adjectives that describe a person as brave.", "", 150, 1.0, 0.5, 0.4, 0.4], ["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 150, 1.0, 0.5, 0.4, 0.4], ] chat_intro = '''The following is a coherent verbose detailed conversation between an AI girl named <|bot|> and <|user|>. One day, they meet at a café. Note the following important facts about <|bot|>: 1. <|bot|> is very intelligent, creative and friendly. 2. <|bot|> likes to tell <|user|> a lot about herself and her opinions. 3. <|bot|> usually gives <|user|> kind, helpful and informative advices. <|user|>: Hello, how are you doing? <|bot|>: Hi! Thanks, I'm fine. What about you? <|user|>: I am fine. It's nice to see you. Look, here is a store selling tea and juice. We can go and take a look. Would you like to chat with me for a while? <|bot|>: Sure. Let's go inside. What would you like to talk about? I'm listening. ''' def user(message, chatbot): chatbot = chatbot or [] print(f"User: {message}") return "", chatbot + [[message, None]] def alternative(chatbot, history): if not chatbot or not history: return chatbot, history chatbot[-1][1] = None history[0] = copy.deepcopy(history[1]) return chatbot, history def chat( prompt, user, bot, chatbot, history, temperature=1.0, top_p=0.8, presence_penalty=0.1, count_penalty=0.1, ): args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p), alpha_frequency=float(count_penalty), alpha_presence=float(presence_penalty), token_ban=[], # ban the generation of some tokens token_stop=[]) # stop generation whenever you see any token here if not chatbot: return chatbot, history message = chatbot[-1][0] message = message.strip().replace('\r\n','\n').replace('\n\n','\n') ctx = f"{user}: {message}\n\n{bot}:" # gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) # print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') if not history: prompt = prompt.replace("<|user|>", user.strip()) prompt = prompt.replace("<|bot|>", bot.strip()) prompt = prompt.strip() prompt = f"\n{prompt}\n\n" out, state = model.forward(pipeline.encode(prompt), None) history = [state, None, []] # [state, state_pre, tokens] print("History reloaded.") [state, _, all_tokens] = history state_pre_0 = copy.deepcopy(state) out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:], state) state_pre_1 = copy.deepcopy(state) # For recovery print("Bot: ", end='') begin = len(all_tokens) out_last = begin out_str: str = '' occurrence = {} for i in range(300): if i <= 0: nl_bias = -float('inf') elif i <= 30: nl_bias = (i - 30) * 0.1 elif i <= 130: nl_bias = 0 else: nl_bias = (i - 130) * 0.25 out[187] += nl_bias for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) next_tokens = [token] if token == 0: next_tokens = pipeline.encode('\n\n') all_tokens += next_tokens if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 out, state = model.forward(next_tokens, state) tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: print(tmp, end='', flush=True) out_last = begin + i + 1 out_str += tmp chatbot[-1][1] = out_str.strip() history = [state, all_tokens] yield chatbot, history out_str = pipeline.decode(all_tokens[begin:]) out_str = out_str.replace("\r\n", '\n').replace('\\n', '\n') if '\n\n' in out_str: break # State recovery if f'{user}:' in out_str or f'{bot}:' in out_str: idx_user = out_str.find(f'{user}:') idx_user = len(out_str) if idx_user == -1 else idx_user idx_bot = out_str.find(f'{bot}:') idx_bot = len(out_str) if idx_bot == -1 else idx_bot idx = min(idx_user, idx_bot) if idx < len(out_str): out_str = f" {out_str[:idx].strip()}\n\n" tokens = pipeline.encode(out_str) all_tokens = all_tokens[:begin] + tokens out, state = model.forward(tokens, state_pre_1) break gc.collect() torch.cuda.empty_cache() chatbot[-1][1] = out_str.strip() history = [state, state_pre_0, all_tokens] yield chatbot, history with gr.Blocks(title=title) as demo: gr.HTML(f"
\n

🐦Raven - {title}

\n
") with gr.Tab("Instruct"): gr.Markdown(f"Raven is [RWKV 7B](https://github.com/BlinkDL/ChatRWKV) 100% RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM) finetuned to follow instructions. *** Please try examples first (bottom of page) *** (edit them to use your question). Demo limited to ctxlen 1024. It is finetuned on [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), codealpaca and more. For best results, *** keep you prompt short and clear ***.") with gr.Row(): with gr.Column(): instruction = gr.Textbox(lines=2, label="Instruction", value="Tell me about ravens.") input = gr.Textbox(lines=2, label="Input", placeholder="none") token_count = gr.Slider(10, 200, label="Max Tokens", step=10, value=150) temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0) top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.7) presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.2) count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.2) with gr.Column(): with gr.Row(): submit = gr.Button("Submit", variant="primary") clear = gr.Button("Clear", variant="secondary") output = gr.Textbox(label="Output", lines=5) data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"]) submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], [output]) clear.click(lambda: None, [], [output]) data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty]) with gr.Tab("Chat"): gr.Markdown(f'''*** Default Chat Scenario: You (Bob) and Bot (Alice) meet at a café. ***\nIf you want to change the scenario, make sure to use an empty new line to separate different people's words. Also, make sure there is no empty new lines within one person's lines. Changes only take effect after clearing.''', label="Description") with gr.Row(): with gr.Column(): chatbot = gr.Chatbot() state = gr.State() message = gr.Textbox(label="Message") with gr.Row(): send = gr.Button("Send", variant="primary") alt = gr.Button("Alternative", variant="secondary") clear = gr.Button("Clear", variant="secondary") with gr.Column(): with gr.Row(): user_name = gr.Textbox(lines=1, max_lines=1, label="User Name", value="Bob") bot_name = gr.Textbox(lines=1, max_lines=1, label="Bot Name", value="Alice") prompt = gr.Textbox(lines=10, max_lines=50, label="Scenario", value=chat_intro) temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0) top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.7) presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.2) count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.2) chat_inputs = [ prompt, user_name, bot_name, chatbot, state, temperature, top_p, presence_penalty, count_penalty ] chat_outputs = [chatbot, state] message.submit(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs) send.click(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs) alt.click(alternative, [chatbot, state], [chatbot, state], queue=False).then(chat, chat_inputs, chat_outputs) clear.click(lambda: ([], None, ""), [], [chatbot, state, message], queue=False) demo.queue(max_size=10) demo.launch(share=True)