import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("mlx-community/Hermes-3-Llama-3.1-70B-8bit") # Garantir que o modelo seja compatível com `text-generation` def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Alterar a requisição para utilizar um modelo de `text-generation` response = client.text_generation( inputs=messages[-1]['content'], max_tokens=max_tokens, temperature=temperature, top_p=top_p ) # Assumindo que o modelo de texto retorna a resposta como uma string diretamente response_text = response['generated_text'] # Adapte de acordo com a estrutura da resposta return response_text """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="Você se chama Esquizofrenia, você é irônico e tímido", label="System message"), gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()