from typing import List, Optional, Tuple, Union from PIL import Image import torch import torch.nn as nn from torch.nn import CrossEntropyLoss import torchvision.transforms.functional as TF from transformers import LlamaConfig, LlamaModel, LlamaForCausalLM, CLIPVisionModel, CLIPImageProcessor,AutoImageProcessor, DeformableDetrModel from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast DEFAULT_IMAGE_TOKEN = "" DEFAULT_IMAGE_PATCH_TOKEN = "" DEFAULT_IM_START_TOKEN = "" DEFAULT_IM_END_TOKEN = "" Rxn_st = "" Rxn_ed = "" # Reaction Rct_st = "" Rct_ed = "" # Reactant Prd_st = " " Prd_ed = "" # Product Cnd_st = "" Cnd_ed = "" Mol = "[Str]" # Molecule Txt = "[Txt]" # Text Sol = "[Sol]" Age = "[Age]" Tem = "[Tem]" Yld = "[Yld]" Obj = "[Obj]" rxn_tokens = [Rxn_st, Rxn_ed,Rct_st, Rct_ed, Prd_st, Prd_ed, Cnd_st, Cnd_ed, Mol, Txt,Sol,Age,Tem, Yld, Obj] number_tokens = [f"{i:03}" for i in range(1, 1000)] ID_tokens = [f"" for i in range(1, 51)] def resize_batch(images, size): """ Resize a batch of images to the given size. Args: - images (torch.Tensor): Input tensor of shape (B, C, H, W) - size (tuple): Desired output size (new_h, new_w) Returns: - torch.Tensor: Resized images of shape (B, C, new_h, new_w) """ resized_images = [] for image in images: # Resize image and add it to the list resized = TF.resize(image, size, interpolation=Image.BICUBIC) resized_images.append(resized) # Stack all resized images along the batch dimension return torch.stack(resized_images) class VisionLanguageAdapter(nn.Module): def __init__(self, feature_dim=1280, num_queries=256, num_heads=16): super(VisionLanguageAdapter, self).__init__() self.num_queries = num_queries self.query_embeds = nn.Parameter(torch.randn(num_queries, feature_dim)) self.cross_attention = nn.MultiheadAttention(embed_dim=feature_dim, num_heads=num_heads, batch_first=True) self.positional_encoding = nn.Parameter(torch.randn(num_queries, feature_dim)) self.layer_norm = nn.LayerNorm(feature_dim) self.linear = nn.Linear(feature_dim, 5120) def forward(self, image_features): # Add positional encoding to query embeddings query_embeds = self.query_embeds + self.positional_encoding # Flag to check if input was unbatched was_unbatched = image_features.dim() == 2 # Adjust dimensions based on whether input is batched or unbatched if was_unbatched: # For unbatched input, add a batch dimension for compatibility image_features = image_features.unsqueeze(0) query_embeds = query_embeds.unsqueeze(0) else: # For batched input, adjust the query embeddings to match the batch size batch_size = image_features.size(0) query_embeds = query_embeds.unsqueeze(0).expand(batch_size, -1, -1) # Apply cross attention attn_output, _ = self.cross_attention(query=query_embeds, key=image_features, value=image_features) attn_output = self.layer_norm(attn_output) attn_output = self.linear(attn_output) # If the input was unbatched, remove the batch dimension from the output if was_unbatched: attn_output = attn_output.squeeze(0) return attn_output class ShikraConfig(LlamaConfig): model_type = "shikra" class ShikraLlamaModel(LlamaModel): config_class = ShikraConfig def __init__(self, config: LlamaConfig, mm_vision_tower=None, mm_hidden_size=None): super(ShikraLlamaModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): # HACK: for FSDP self.vision_tower = nn.ModuleList([DeformableDetrModel.from_pretrained(config.mm_vision_tower)]) #self.vision_tower = nn.ModuleList([CLIPVisionModel.from_pretrained(config.mm_vision_tower)]) if hasattr(config, "use_mm_proj"): self.mm_projector = nn.Linear(256, config.hidden_size) def initialize_vision_modules(self, vision_tower, mm_vision_select_layer, pretrain_mm_mlp_adapter=None, tune_mm_mlp_adapter=False): self.config.mm_vision_tower = vision_tower image_processor = AutoImageProcessor.from_pretrained(vision_tower) #image_processor = CLIPImageProcessor.from_pretrained(vision_tower) if not hasattr(self, 'vision_tower'): vision_tower = DeformableDetrModel.from_pretrained(vision_tower) #vision_tower = CLIPVisionModel.from_pretrained(vision_tower) self.vision_tower = nn.ModuleList([vision_tower]) # 使用 ModuleList 包装模型 else: self.vision_tower[0] = DeformableDetrModel.from_pretrained(vision_tower) #self.vision_tower[0] = CLIPVisionModel.from_pretrained(vision_tower)# 直接赋值到 ModuleList 中的相应位置 # 设置模型为训练模式 self.vision_tower[0].requires_grad_(True) self.vision_tower[0] = self.vision_tower[0].to(torch.float16) vision_config = self.vision_tower[0].config num_patches = 300 self.config.use_mm_proj = True self.config.mm_hidden_size = 256 self.config.mm_vision_select_layer = mm_vision_select_layer if not hasattr(self, 'mm_projector'): self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.hidden_size) if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()}) return dict( image_processor=image_processor, image_token_len=num_patches, vision_config=vision_config ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: orig_embeds_params = getattr(self, 'orig_embeds_params', None) # if orig_embeds_params is not None: # orig_embeds_params = orig_embeds_params[0] # with torch.no_grad(): # self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) vision_tower = getattr(self, 'vision_tower', None) if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None: # TODO: this is a modified multimodal LLM -- Haotian Liu vision_tower = vision_tower[0] # HACK: for FSDP new_size = (1333, 1333) images = resize_batch(images, new_size) with torch.no_grad(): if type(images) is list: # variable length images image_features = [] for image in images: image_forward_out = vision_tower(image.unsqueeze(0)) select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1) image_feature = image_forward_out.last_hidden_state # image_feature = select_hidden_state[:, 1:] image_features.append(image_feature) #print(image_features.shape) else: #print(images.shape) image_forward_outs = vision_tower(images) select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1) image_features = image_forward_outs.last_hidden_state # print(image_features.shape) # image_forward_outs = vision_tower(images, output_hidden_states=True) # select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1) # select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer] # image_features = select_hidden_state[:, 1:] if type(images) is list: image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features] else: image_features = self.mm_projector(image_features) dummy_image_features = torch.zeros(300, 256, device=inputs_embeds.device, dtype=inputs_embeds.dtype) dummy_image_features = self.mm_projector(dummy_image_features) new_input_embeds = [] cur_image_idx = 0 for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds): if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0: # multimodal LLM, but the current sample is not multimodal cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum() new_input_embeds.append(cur_input_embeds) continue if vision_tower.config.use_im_start_end: cur_image_features = image_features[cur_image_idx] num_patches = cur_image_features.shape[0] if (cur_input_ids == vision_tower.config.im_start_token).sum() != ( cur_input_ids == vision_tower.config.im_end_token).sum(): raise ValueError("The number of image start tokens and image end tokens should be the same.") image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0] for image_start_token_pos in image_start_tokens: cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device) num_patches = cur_image_features.shape[0] if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token: raise ValueError("The image end token should follow the image start token.") if orig_embeds_params is not None: cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos + 1], cur_image_features, cur_input_embeds[ image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0) else: cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos + 1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0) cur_image_idx += 1 new_input_embeds.append(cur_new_input_embeds) else: cur_image_features = image_features[cur_image_idx] num_patches = cur_image_features.shape[0] if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches: raise ValueError("The number of image patch tokens should be the same as the number of image patches.") masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0] mask_index_start = masked_indices[0] if (masked_indices != torch.arange(mask_index_start, mask_index_start + num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any(): raise ValueError("The image patch tokens should be consecutive.") if orig_embeds_params is not None: cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start + num_patches:].detach()), dim=0) else: cur_new_input_embeds = torch.cat( (cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start + num_patches:]), dim=0) new_input_embeds.append(cur_new_input_embeds) inputs_embeds = torch.stack(new_input_embeds, dim=0) return super(ShikraLlamaModel, self).forward( input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) class ShikraLlamaForCausalLM(LlamaForCausalLM): config_class = ShikraConfig def __init__(self, config: ShikraConfig): super(LlamaForCausalLM, self).__init__(config) self.model = ShikraLlamaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, images=images ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model/pipeline parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values: input_ids = input_ids[:, -1:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "images": kwargs.get("images", None), } ) return model_inputs def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device, tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None): vision_config = self.model.vision_tower[0].config vision_config.use_im_start_end = mm_use_im_start_end tokenizer.add_tokens(rxn_tokens) tokenizer.add_tokens(ID_tokens) #tokenizer.add_tokens(number_tokens) tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if mm_use_im_start_end: num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids( [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg if tune_mm_mlp_adapter: self.model.orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)] for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False if pretrain_mm_mlp_adapter: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] assert num_new_tokens == 2 if input_embeddings.shape == embed_tokens_weight.shape: input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] elif embed_tokens_weight.shape[0] == num_new_tokens: input_embeddings[-num_new_tokens:] = embed_tokens_weight else: raise ValueError( f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]