import albumentations as A from albumentations.augmentations.geometric.functional import safe_rotate_enlarged_img_size, _maybe_process_in_chunks, \ keypoint_rotate import cv2 import math import random import numpy as np def safe_rotate( img: np.ndarray, angle: int = 0, interpolation: int = cv2.INTER_LINEAR, value: int = None, border_mode: int = cv2.BORDER_REFLECT_101, ): old_rows, old_cols = img.shape[:2] # getRotationMatrix2D needs coordinates in reverse order (width, height) compared to shape image_center = (old_cols / 2, old_rows / 2) # Rows and columns of the rotated image (not cropped) new_rows, new_cols = safe_rotate_enlarged_img_size(angle=angle, rows=old_rows, cols=old_cols) # Rotation Matrix rotation_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) # Shift the image to create padding rotation_mat[0, 2] += new_cols / 2 - image_center[0] rotation_mat[1, 2] += new_rows / 2 - image_center[1] # CV2 Transformation function warp_affine_fn = _maybe_process_in_chunks( cv2.warpAffine, M=rotation_mat, dsize=(new_cols, new_rows), flags=interpolation, borderMode=border_mode, borderValue=value, ) # rotate image with the new bounds rotated_img = warp_affine_fn(img) return rotated_img def keypoint_safe_rotate(keypoint, angle, rows, cols): old_rows = rows old_cols = cols # Rows and columns of the rotated image (not cropped) new_rows, new_cols = safe_rotate_enlarged_img_size(angle=angle, rows=old_rows, cols=old_cols) col_diff = (new_cols - old_cols) / 2 row_diff = (new_rows - old_rows) / 2 # Shift keypoint shifted_keypoint = (int(keypoint[0] + col_diff), int(keypoint[1] + row_diff), keypoint[2], keypoint[3]) # Rotate keypoint rotated_keypoint = keypoint_rotate(shifted_keypoint, angle, rows=new_rows, cols=new_cols) return rotated_keypoint class SafeRotate(A.SafeRotate): def __init__( self, limit=90, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, value=None, mask_value=None, always_apply=False, p=0.5, ): super(SafeRotate, self).__init__( limit=limit, interpolation=interpolation, border_mode=border_mode, value=value, mask_value=mask_value, always_apply=always_apply, p=p) def apply(self, img, angle=0, interpolation=cv2.INTER_LINEAR, **params): return safe_rotate( img=img, value=self.value, angle=angle, interpolation=interpolation, border_mode=self.border_mode) def apply_to_keypoint(self, keypoint, angle=0, **params): return keypoint_safe_rotate(keypoint, angle=angle, rows=params["rows"], cols=params["cols"]) class CropWhite(A.DualTransform): def __init__(self, value=(255, 255, 255), pad=0, p=1.0): super(CropWhite, self).__init__(p=p) self.value = value self.pad = pad assert pad >= 0 def update_params(self, params, **kwargs): super().update_params(params, **kwargs) assert "image" in kwargs img = kwargs["image"] height, width, _ = img.shape x = (img != self.value).sum(axis=2) if x.sum() == 0: return params row_sum = x.sum(axis=1) top = 0 while row_sum[top] == 0 and top+1 < height: top += 1 bottom = height while row_sum[bottom-1] == 0 and bottom-1 > top: bottom -= 1 col_sum = x.sum(axis=0) left = 0 while col_sum[left] == 0 and left+1 < width: left += 1 right = width while col_sum[right-1] == 0 and right-1 > left: right -= 1 # crop_top = max(0, top - self.pad) # crop_bottom = max(0, height - bottom - self.pad) # crop_left = max(0, left - self.pad) # crop_right = max(0, width - right - self.pad) # params.update({"crop_top": crop_top, "crop_bottom": crop_bottom, # "crop_left": crop_left, "crop_right": crop_right}) params.update({"crop_top": top, "crop_bottom": height - bottom, "crop_left": left, "crop_right": width - right}) return params def apply(self, img, crop_top=0, crop_bottom=0, crop_left=0, crop_right=0, **params): height, width, _ = img.shape img = img[crop_top:height - crop_bottom, crop_left:width - crop_right] img = A.augmentations.pad_with_params( img, self.pad, self.pad, self.pad, self.pad, border_mode=cv2.BORDER_CONSTANT, value=self.value) return img def apply_to_keypoint(self, keypoint, crop_top=0, crop_bottom=0, crop_left=0, crop_right=0, **params): x, y, angle, scale = keypoint[:4] return x - crop_left + self.pad, y - crop_top + self.pad, angle, scale def get_transform_init_args_names(self): return ('value', 'pad') class PadWhite(A.DualTransform): def __init__(self, pad_ratio=0.2, p=0.5, value=(255, 255, 255)): super(PadWhite, self).__init__(p=p) self.pad_ratio = pad_ratio self.value = value def update_params(self, params, **kwargs): super().update_params(params, **kwargs) assert "image" in kwargs img = kwargs["image"] height, width, _ = img.shape side = random.randrange(4) if side == 0: params['pad_top'] = int(height * self.pad_ratio * random.random()) elif side == 1: params['pad_bottom'] = int(height * self.pad_ratio * random.random()) elif side == 2: params['pad_left'] = int(width * self.pad_ratio * random.random()) elif side == 3: params['pad_right'] = int(width * self.pad_ratio * random.random()) return params def apply(self, img, pad_top=0, pad_bottom=0, pad_left=0, pad_right=0, **params): height, width, _ = img.shape img = A.augmentations.pad_with_params( img, pad_top, pad_bottom, pad_left, pad_right, border_mode=cv2.BORDER_CONSTANT, value=self.value) return img def apply_to_keypoint(self, keypoint, pad_top=0, pad_bottom=0, pad_left=0, pad_right=0, **params): x, y, angle, scale = keypoint[:4] return x + pad_left, y + pad_top, angle, scale def get_transform_init_args_names(self): return ('value', 'pad_ratio') class SaltAndPepperNoise(A.DualTransform): def __init__(self, num_dots, value=(0, 0, 0), p=0.5): super().__init__(p) self.num_dots = num_dots self.value = value def apply(self, img, **params): height, width, _ = img.shape num_dots = random.randrange(self.num_dots + 1) for i in range(num_dots): x = random.randrange(height) y = random.randrange(width) img[x, y] = self.value return img def apply_to_keypoint(self, keypoint, **params): return keypoint def get_transform_init_args_names(self): return ('value', 'num_dots') class ResizePad(A.DualTransform): def __init__(self, height, width, interpolation=cv2.INTER_LINEAR, value=(255, 255, 255)): super(ResizePad, self).__init__(always_apply=True) self.height = height self.width = width self.interpolation = interpolation self.value = value def apply(self, img, interpolation=cv2.INTER_LINEAR, **params): h, w, _ = img.shape img = A.augmentations.geometric.functional.resize( img, height=min(h, self.height), width=min(w, self.width), interpolation=interpolation ) h, w, _ = img.shape pad_top = (self.height - h) // 2 pad_bottom = (self.height - h) - pad_top pad_left = (self.width - w) // 2 pad_right = (self.width - w) - pad_left img = A.augmentations.pad_with_params( img, pad_top, pad_bottom, pad_left, pad_right, border_mode=cv2.BORDER_CONSTANT, value=self.value, ) return img def normalized_grid_distortion( img, num_steps=10, xsteps=(), ysteps=(), *args, **kwargs ): height, width = img.shape[:2] # compensate for smaller last steps in source image. x_step = width // num_steps last_x_step = min(width, ((num_steps + 1) * x_step)) - (num_steps * x_step) xsteps[-1] *= last_x_step / x_step y_step = height // num_steps last_y_step = min(height, ((num_steps + 1) * y_step)) - (num_steps * y_step) ysteps[-1] *= last_y_step / y_step # now normalize such that distortion never leaves image bounds. tx = width / math.floor(width / num_steps) ty = height / math.floor(height / num_steps) xsteps = np.array(xsteps) * (tx / np.sum(xsteps)) ysteps = np.array(ysteps) * (ty / np.sum(ysteps)) # do actual distortion. return A.augmentations.functional.grid_distortion(img, num_steps, xsteps, ysteps, *args, **kwargs) class NormalizedGridDistortion(A.augmentations.transforms.GridDistortion): def apply(self, img, stepsx=(), stepsy=(), interpolation=cv2.INTER_LINEAR, **params): return normalized_grid_distortion(img, self.num_steps, stepsx, stepsy, interpolation, self.border_mode, self.value) def apply_to_mask(self, img, stepsx=(), stepsy=(), **params): return normalized_grid_distortion( img, self.num_steps, stepsx, stepsy, cv2.INTER_NEAREST, self.border_mode, self.mask_value)