import torch from .decode_strategy import DecodeStrategy def sample_with_temperature(logits, sampling_temp, keep_topk): """Select next tokens randomly from the top k possible next tokens. Samples from a categorical distribution over the ``keep_topk`` words using the category probabilities ``logits / sampling_temp``. """ if sampling_temp == 0.0 or keep_topk == 1: # argmax topk_scores, topk_ids = logits.topk(1, dim=-1) if sampling_temp > 0: topk_scores /= sampling_temp else: logits = torch.div(logits, sampling_temp) if keep_topk > 0: top_values, top_indices = torch.topk(logits, keep_topk, dim=1) kth_best = top_values[:, -1].view([-1, 1]) kth_best = kth_best.repeat([1, logits.shape[1]]).float() ignore = torch.lt(logits, kth_best) logits = logits.masked_fill(ignore, -10000) dist = torch.distributions.Multinomial(logits=logits, total_count=1) topk_ids = torch.argmax(dist.sample(), dim=1, keepdim=True) topk_scores = logits.gather(dim=1, index=topk_ids) return topk_ids, topk_scores class GreedySearch(DecodeStrategy): """Select next tokens randomly from the top k possible next tokens. """ def __init__(self, pad, bos, eos, batch_size, min_length, max_length, return_attention=False, return_hidden=False, sampling_temp=1, keep_topk=1): super().__init__( pad, bos, eos, batch_size, 1, min_length, max_length, return_attention, return_hidden) self.sampling_temp = sampling_temp self.keep_topk = keep_topk self.topk_scores = None def initialize(self, memory_bank, device=None): fn_map_state = None if device is None: device = memory_bank.device self.memory_length = memory_bank.size(1) super().initialize(memory_bank, device) self.select_indices = torch.arange( self.batch_size, dtype=torch.long, device=device) self.original_batch_idx = torch.arange( self.batch_size, dtype=torch.long, device=device) return fn_map_state, memory_bank @property def current_predictions(self): return self.alive_seq[:, -1] @property def batch_offset(self): return self.select_indices def _pick(self, log_probs): """Function used to pick next tokens. """ topk_ids, topk_scores = sample_with_temperature( log_probs, self.sampling_temp, self.keep_topk) return topk_ids, topk_scores def advance(self, log_probs, attn=None, hidden=None, label=None): """Select next tokens randomly from the top k possible next tokens. """ self.ensure_min_length(log_probs) topk_ids, self.topk_scores = self._pick(log_probs) # log_probs: b x v; topk_ids & self.topk_scores: b x (t=1) self.is_finished = topk_ids.eq(self.eos) if label is not None: label = label.view_as(self.is_finished) self.is_finished = label.eq(self.eos) self.alive_seq = torch.cat([self.alive_seq, topk_ids], -1) # b x (l+1) (first element is ; note l = len(self)-1) self.alive_log_token_scores = torch.cat([self.alive_log_token_scores, self.topk_scores], -1) if self.return_attention: if self.alive_attn is None: self.alive_attn = attn else: self.alive_attn = torch.cat([self.alive_attn, attn], 1) if self.return_hidden: if self.alive_hidden is None: self.alive_hidden = hidden else: self.alive_hidden = torch.cat([self.alive_hidden, hidden], 1) # b x l x h self.ensure_max_length() def update_finished(self): """Finalize scores and predictions.""" # is_finished indicates the decoder finished generating the sequence. Remove it from the batch and update # the results. finished_batches = self.is_finished.view(-1).nonzero() for b in finished_batches.view(-1): b_orig = self.original_batch_idx[b] # scores/predictions/attention are lists, # (to be compatible with beam-search) self.scores[b_orig].append(torch.exp(torch.mean(self.alive_log_token_scores[b])).item()) self.token_scores[b_orig].append(torch.exp(self.alive_log_token_scores[b]).tolist()) self.predictions[b_orig].append(self.alive_seq[b, 1:]) # skip self.attention[b_orig].append( self.alive_attn[b, :, :self.memory_length] if self.alive_attn is not None else []) self.hidden[b_orig].append( self.alive_hidden[b, :] if self.alive_hidden is not None else []) self.done = self.is_finished.all() if self.done: return is_alive = ~self.is_finished.view(-1) self.alive_seq = self.alive_seq[is_alive] self.alive_log_token_scores = self.alive_log_token_scores[is_alive] if self.alive_attn is not None: self.alive_attn = self.alive_attn[is_alive] if self.alive_hidden is not None: self.alive_hidden = self.alive_hidden[is_alive] self.select_indices = is_alive.nonzero().view(-1) self.original_batch_idx = self.original_batch_idx[is_alive] # select_indices is equal to original_batch_idx for greedy search?