import gradio as gr from fastai.vision.all import * #import skimage # for interpretation learn = load_learner('grain_classifier.pkl') labels = learn.dls.vocab def predict(img): pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Grain Classifier" description = "A grain classifier trained on the 150 online images with fastai. Created as a demo for Gradio and HuggingFace Spaces." #article="
" examples = ['sample/barley_seed.jpeg', 'sample/corn_seed.jpeg', 'sample/rye_seed.jpeg', 'sample/wheat_seed.jpeg'] interpretation='default' # what parts of the input are responsible for the output enable_queue=True gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(224, 224)), outputs=gr.outputs.Label(num_top_classes=4), title=title, description=description, #article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch()