import gradio as gr models = { # "object-detection": "facebook/detr-resnet-50", "image-classification": "microsoft/resnet-50", "text-to-image": "cagliostrolab/animagine-xl-3.0", "image-to-text": "Salesforce/blip-image-captioning-large", "audio-classification": "speechbrain/emotion-recognition-wav2vec2-IEMOCAP", "audio-to-audio": "speechbrain/mtl-mimic-voicebank", "automatic-speech-recognition": "jonatasgrosman/wav2vec2-large-xlsr-53-english", "conversational": "microsoft/DialoGPT-medium", "feature-extraction": "cambridgeltl/SapBERT-from-PubMedBERT-fulltext", "fill-mask": "bert-base-uncased", "question-answering": "deepset/roberta-base-squad2", "summarization": "facebook/bart-large-cnn", "text-classification": "cardiffnlp/twitter-roberta-base-sentiment-latest", "text-generation": "gpt2", "text2text-generation": "vennify/t5-base-grammar-correction", "translation": "Helsinki-NLP/opus-mt-fr-en", "zero-shot-classification": "facebook/bart-large-mnli", "sentence-similarity": "sentence-transformers/all-mpnet-base-v2", "text-to-speech": "facebook/mms-tts-eng", "token-classification": "benjamin/wtp-canine-s-1l", "document-question-answering": "fxmarty/tiny-doc-qa-vision-encoder-decoder", "visual-question-answering": "Salesforce/blip-vqa-capfilt-large", } with gr.Blocks() as demo: gr.Markdown("## Gradio Pipelines Tasks") for k, v in models.items(): with gr.Tab(k): gr.load(v, src="models") demo.launch()