import torch import librosa import commons import utils from models import SynthesizerTrn from text import text_to_sequence import numpy as np from mel_processing import spectrogram_torch import gradio as gr from indic_transliteration import sanscript SCRIPT_DICT={ 'Devanagari':sanscript.DEVANAGARI, 'IAST':sanscript.IAST, 'SLP1':sanscript.SLP1, 'HK':sanscript.HK } DEFAULT_TEXT='संस्कृतम् जगतः एकतमा अतिप्राचीना समृद्धा शास्त्रीया च भाषासु वर्तते । संस्कृतं भारतस्य जगत: वा भाषासु एकतमा‌ प्राचीनतमा ।' def get_text(text, hps, cleaned=False): if cleaned: text_norm = text_to_sequence(text, hps.symbols, []) else: text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm def default_text(script): if script=='Devanagari': return DEFAULT_TEXT else: return sanscript.transliterate(DEFAULT_TEXT,sanscript.DEVANAGARI,SCRIPT_DICT[script]) def speech_synthesize(text,script, speaker_id, length_scale): text=text.replace('\n','') if script!='Devanagari': text=sanscript.transliterate(text,SCRIPT_DICT[script],sanscript.DEVANAGARI) print(text) stn_tst = get_text(text, hps_ms) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) sid = torch.LongTensor([speaker_id]) audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=length_scale)[0][0,0].data.cpu().float().numpy() return (hps_ms.data.sampling_rate, audio) def voice_convert(audio,origin_id,target_id): sampling_rate, audio = audio audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != hps_ms.data.sampling_rate: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps_ms.data.sampling_rate) with torch.no_grad(): y = torch.FloatTensor(audio).unsqueeze(0) spec = spectrogram_torch(y, hps_ms.data.filter_length, hps_ms.data.sampling_rate, hps_ms.data.hop_length, hps_ms.data.win_length, center=False) spec_lengths = torch.LongTensor([spec.size(-1)]) sid_src = torch.LongTensor([origin_id]) sid_tgt = torch.LongTensor([target_id]) audio = net_g_ms.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][0,0].data.cpu().float().numpy() return (hps_ms.data.sampling_rate, audio) if __name__=='__main__': hps_ms = utils.get_hparams_from_file('model/config.json') n_speakers = hps_ms.data.n_speakers n_symbols = len(hps_ms.symbols) speakers = hps_ms.speakers net_g_ms = SynthesizerTrn( n_symbols, hps_ms.data.filter_length // 2 + 1, hps_ms.train.segment_size // hps_ms.data.hop_length, n_speakers=n_speakers, **hps_ms.model) _ = net_g_ms.eval() utils.load_checkpoint('model/model.pth', net_g_ms) with gr.Blocks() as app: gr.Markdown('# Sanskrit Text to Speech\n' '![visitor badge](https://visitor-badge.glitch.me/badge?page_id=cjangcjengh.sanskrit-tts)') with gr.Tab('Text to Speech'): text_script=gr.Radio(['Devanagari','IAST','SLP1','HK'],label='Script',interactive=True,value='Devanagari') text_input = gr.TextArea(label='Text', placeholder='Type your text here',value=DEFAULT_TEXT) speaker_id=gr.Dropdown(speakers,label='Speaker',type='index',interactive=True,value=speakers[0]) length_scale=gr.Slider(0.5,2,1,step=0.1,label='Speaking Speed',interactive=True) tts_button = gr.Button('Synthesize') audio_output = gr.Audio(label='Speech Synthesized') text_script.change(default_text,[text_script],[text_input]) tts_button.click(speech_synthesize,[text_input,text_script,speaker_id,length_scale],[audio_output]) with gr.Tab('Voice Conversion'): audio_input = gr.Audio(label='Audio',interactive=True) speaker_input = gr.Dropdown(speakers, label='Original Speaker',type='index',interactive=True, value=speakers[0]) speaker_output = gr.Dropdown(speakers, label='Target Speaker',type='index',interactive=True, value=speakers[0]) vc_button = gr.Button('Convert') audio_output_vc = gr.Audio(label='Voice Converted') vc_button.click(voice_convert,[audio_input,speaker_input,speaker_output],[audio_output_vc]) gr.Markdown('## Based on\n' '- [VITS](https://github.com/jaywalnut310/vits)\n\n' '## Dataset\n' '- [Vāksañcayaḥ](https://www.cse.iitb.ac.in/~asr/)') app.launch()