import gradio as gr import cv2 import time import openai import base64 import pytz import uuid from threading import Thread from concurrent.futures import ThreadPoolExecutor, as_completed from datetime import datetime import json import os from moviepy.editor import ImageSequenceClip from gradio_client import Client, file import subprocess api_key = os.getenv("OPEN_AI_KEY") user_name = os.getenv("USER_NAME") password = os.getenv("PASSWORD") LENGTH = 3 WEBCAM = 0 MARKDOWN = """ # Conntour """ AVATARS = ( "https://assets-global.website-files.com/63d6dca820934a77a340f31e/63dfb7a21b4c08282d524010_pyramid.png", "https://media.roboflow.com/spaces/openai-white-logomark.png" ) # Set your OpenAI API key openai.api_key = api_key MODEL="gpt-4o" client = openai.OpenAI(api_key=api_key) # Global variable to stop the video capture loop stop_capture = False alerts_mode = True def clip_video_segment(input_video_path, start_time, duration): os.makedirs('videos', exist_ok=True) output_video_path = f"videos/{uuid.uuid4()}.mp4" subprocess.call([ 'ffmpeg', '-y', '-ss', str(start_time), '-i', input_video_path, '-t', str(duration), '-c', 'copy', output_video_path ]) return output_video_path def encode_to_video_fast(frames, fps): os.makedirs('videos', exist_ok=True) video_clip_path = f"videos/{uuid.uuid4()}.mp4" # Get frame size height, width, layers = frames[0].shape size = (width, height) # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'h264') # You can also try 'XVID', 'MJPG', etc. out = cv2.VideoWriter(video_clip_path, fourcc, fps, size) for frame in frames: out.write(frame) out.release() return video_clip_path def encode_to_video(frames, fps): os.makedirs('videos', exist_ok=True) video_clip_path = f"videos/{uuid.uuid4()}.mp4" # Create a video clip from the frames using moviepy clip = ImageSequenceClip([frame[:, :, ::-1] for frame in frames], fps=fps) # Convert from BGR to RGB clip.write_videofile(video_clip_path, codec="libx264") # Convert the video file to base64 with open(video_clip_path, "rb") as video_file: video_data = base64.b64encode(video_file.read()).decode('utf-8') return video_clip_path # Function to process video frames using GPT-4 API def process_frames(frames, frames_to_skip = 1): os.makedirs('saved_frames', exist_ok=True) curr_frame=0 base64Frames = [] while curr_frame < len(frames) - 1: _, buffer = cv2.imencode(".jpg", frames[curr_frame]) base64Frames.append(base64.b64encode(buffer).decode("utf-8")) curr_frame += frames_to_skip return base64Frames # Function to check condition using GPT-4 API def check_condition(prompt, base64Frames): start_time = time.time() print('checking condition for frames:', len(base64Frames)) # Save frames as images messages = [ {"role": "system", "content": """You are analyzing video to check if the user's condition is met. Please respond with a JSON object in the following format: {"condition_met": true/false, "details": "optional details or summary. in the summary DON'T mention the words: image, images, frame, or frames. Instead, make it look like you were provided with video input and avoid referring to individual images or frames explicitly."}"""}, {"role": "user", "content": [prompt, *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)]} ] response = client.chat.completions.create( model="gpt-4o", messages=messages, temperature=0, response_format={ "type": "json_object" } ) end_time = time.time() processing_time = end_time - start_time frames_count = len(base64Frames) api_response = response.choices[0].message.content try: jsonNew = json.loads(api_response) print('result', response.usage.total_tokens, jsonNew) return frames_count, processing_time, jsonNew except: print('result', response.usage.total_tokens, api_response) return frames_count, processing_time, api_response # Function to process video clip and update the chatbot def process_clip(prompt, frames, chatbot): # Print current time in Israel israel_tz = pytz.timezone('Asia/Jerusalem') start_time = datetime.now(israel_tz).strftime('%H:%M:%S') print("[Start]:", start_time, len(frames)) # Encode frames into a video clip fps = int(len(frames) / LENGTH) base64Frames = process_frames(frames, fps) frames_count, processing_time, api_response = check_condition(prompt, base64Frames) if api_response["condition_met"] == True: finish_time = datetime.now(israel_tz).strftime('%H:%M:%S') video_clip_path = encode_to_video_fast(frames, fps) chatbot.append(((video_clip_path,), None)) result = f"Time: {start_time}\n" chatbot.append((result, None)) frame_paths = [] for i, base64_frame in enumerate(base64Frames): frame_data = base64.b64decode(base64_frame) frame_path = f'saved_frames/frame_{uuid.uuid4()}.jpg' with open(frame_path, "wb") as f: f.write(frame_data) frame_paths.append(frame_path) def process_clip_from_file(prompt, frames, chatbot, fps, video_path, id): global stop_capture if not stop_capture: israel_tz = pytz.timezone('Asia/Jerusalem') start_time = datetime.now(israel_tz).strftime('%H:%M:%S') print("[Start]:", start_time, len(frames)) frames_to_skip = int(fps) base64Frames = process_frames(frames, frames_to_skip) frames_count, processing_time, api_response = check_condition(prompt, base64Frames) result = None if api_response and api_response.get("condition_met", False): # video_clip_path = encode_to_video_fast(frames, fps) video_clip_path = clip_video_segment(video_path, id*LENGTH, LENGTH) chatbot.append(((video_clip_path,), None)) chatbot.append((f"Event ID: {id+1}\nDetails: {api_response.get('details', '')}", None)) return chatbot # Function to capture video frames def analyze_stream(prompt, stream, chatbot): global stop_capture stop_capture = False cap = cv2.VideoCapture(stream or WEBCAM) frames = [] start_time = time.time() while not stop_capture: ret, frame = cap.read() if not ret: break frames.append(frame) # Sample the frames every 5 seconds if time.time() - start_time >= LENGTH: # Start a new thread for processing the video clip Thread(target=process_clip, args=(prompt, frames.copy(), chatbot,)).start() frames = [] start_time = time.time() yield chatbot cap.release() return chatbot def analyze_video_file(prompt, video_path, chatbot): global stop_capture stop_capture = False # Reset the stop flag when analysis starts cap = cv2.VideoCapture(video_path) # Get video properties fps = int(cap.get(cv2.CAP_PROP_FPS)) # Frames per second frames_per_chunk = fps * LENGTH # Number of frames per 5-second chunk frames = [] chunk = 0 # Create a thread pool for concurrent processing with ThreadPoolExecutor(max_workers=6) as executor: futures = [] while not stop_capture: ret, frame = cap.read() if not ret: break frames.append(frame) # Split the video into chunks of frames corresponding to 5 seconds if len(frames) >= frames_per_chunk: futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk)) frames = [] chunk+=1 # If any remaining frames that are less than 5 seconds, process them as a final chunk if len(frames) > 0: futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk)) chunk+=1 cap.release() # Yield results as soon as each thread completes for future in as_completed(futures): result = future.result() yield result return chatbot # Function to stop video capture def stop_capture_func(): global stop_capture stop_capture = True # Gradio interface with gr.Blocks(title="Conntour", fill_height=True) as demo: with gr.Tab("Analyze"): with gr.Row(): video = gr.Video(label="Video Source") with gr.Column(): chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS) prompt = gr.Textbox(label="Enter your prompt alert") start_btn = gr.Button("Start") stop_btn = gr.Button("Stop") start_btn.click(analyze_video_file, inputs=[prompt, video, chatbot], outputs=[chatbot], queue=True) stop_btn.click(stop_capture_func) with gr.Tab("Alerts"): with gr.Row(): stream = gr.Textbox(label="Video Source", value="https://streamapi2.eu.loclx.io/video_feed/101 OR rtsp://admin:Conntour1!@eu.loclx.io:5678/Streaming/Channels/101") with gr.Column(): chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS) prompt = gr.Textbox(label="Enter your prompt alert") start_btn = gr.Button("Start") stop_btn = gr.Button("Stop") start_btn.click(analyze_stream, inputs=[prompt, stream, chatbot], outputs=[chatbot], queue=True) stop_btn.click(stop_capture_func) demo.launch(favicon_path='favicon.ico', auth=(user_name, password))