import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Lê as variáveis de ambiente para autenticação e compartilhamento
#auth_users = os.environ.get("GRADIO_AUTH_USERS")
#auth_passwords = os.environ.get("GRADIO_AUTH_PASSWORDS")
# Converte as strings de usuários e senhas em listas
#auth_users = [user.strip() for user in auth_users.split(",")]
#auth_passwords = [password.strip() for password in auth_passwords.split(",")]
# Cria um dicionário de autenticação
#auth_credentials = dict(zip(auth_users, auth_passwords))
DESCRIPTION = '''
Meta Llama3 8B
This Space demonstrates the instruction-tuned model Meta Llama3 8b Chat. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!
🔎 For more details about the Llama3 release and how to use the model with transformers
, take a look at our blog post.
🦕 Looking for an even more powerful model? Check out the Hugging Chat integration for Meta Llama 3 70b
'''
LICENSE = """
---
CreativeWoks AI: Intelligence System for Advanced Dialogue and Organized Responses Assistance
"""
PLACEHOLDER = """
CreativeWorks Ai
Este espaço demonstra o modelo customizado para o português brasileiro Mistral-7B-v0.3. O Mistral-7B-v0.3 Large Language Model (LLM) é uma versão do Mistral-7B-v0.2 com vocabulário expandido. A CreativeWorks modificou e afinou o modelo para que seja mais rápido e alcance desempenho comparável aos principais modelos de código aberto existentes 10 vezes maiores, incluindo diversas melhorias e otimização para raciocínio lógico, com foco em RAG (Recuperação Aumentada por Geração).
🔎 Para mais detalhes sobre o modelo e como utilizá-lo com transformers
, dê uma olhada em nosso model card..
🦕 Procurando um modelo ainda mais poderoso? Confira a integração do Hugging Chat para modelos maiores.
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("CreativeWorksAi/CreativeWorks_Mistral_7b_Chat_V1")
model = AutoModelForCausalLM.from_pretrained("CreativeWorksAi/CreativeWorks_Mistral_7b_Chat_V1", token=HF_TOKEN, device_map="auto")
#model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto") # to("cuda:0")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("")
]
@spaces.GPU(duration=120)
def CreativeWorks_Mistral_7b_Chat_V1(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the Mistral model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"from": "human", "value": user}, {"from": "assistant", "value": assistant}])
conversation.append({"from": "human", "value": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
pad_token_id=tokenizer.eos_token_id
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
# Remove the unwanted prefix if present
text = text.replace("<|im_start|>assistant", " ")
outputs.append(text)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='CreativeWorks Ai')
with gr.Blocks(fill_height=True, css=css) as demo:
#gr.Markdown(DESCRIPTION)
#gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=CreativeWorks_Mistral_7b_Chat_V1,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=256,
maximum=8192,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
['How to setup a human base on Mars? Give short answer.'],
['Explain theory of relativity to me like I’m 8 years old.'],
['What is 9,000 * 9,000?'],
['Write a pun-filled happy birthday message to my friend Alex.'],
['Justify why a penguin might make a good king of the jungle.']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch(auth=("teste", "teste@teste"), share=True)