import gradio as gr import torch from diffusers.utils import load_image from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline from diffusers.models.controlnet_flux import FluxControlNetModel import random import numpy as np import os from huggingface_hub import login login(os.getenv("hfapikey")) # Initialize models base_model = 'black-forest-labs/FLUX.1-dev' controlnet_model = 'promeai/FLUX.1-controlnet-lineart-promeai' device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch_dtype) pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch_dtype) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max def infer( prompt, control_image_path, controlnet_conditioning_scale, guidance_scale, num_inference_steps, seed, randomize_seed, ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.manual_seed(seed) control_image = load_image(control_image_path) if control_image_path else None # Generate image result = pipe( prompt=prompt, control_image=control_image, controlnet_conditioning_scale=controlnet_conditioning_scale, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator, ).images[0] return result, seed css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("## Zero-shot Partial Style Transfer for Line Art Images, Powered by FLUX.1") with gr.Row(): prompt = gr.Textbox( label="Prompt", placeholder="Enter your prompt", max_lines=1, ) run_button = gr.Button("Generate", variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): control_image = gr.Image( sources=['upload', 'webcam', 'clipboard'], type="filepath", label="Control Image (Line Art)" ) controlnet_conditioning_scale = gr.Slider( label="ControlNet Conditioning Scale", minimum=0.0, maximum=1.0, value=0.6, step=0.1 ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.5, step=0.1 ) num_inference_steps = gr.Slider( label="Number of Inference Steps", minimum=1, maximum=100, value=28, step=1 ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0 ) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) gr.Examples( examples=[ "Shiba Inu wearing dinosaur costume riding skateboard", "Victorian style mansion interior with candlelight" ], inputs=[prompt] ) run_button.click( infer, inputs=[ prompt, control_image, controlnet_conditioning_scale, guidance_scale, num_inference_steps, seed, randomize_seed ], outputs=[result, seed] ) if __name__ == "__main__": demo.launch()