import os os.environ['TRANSFORMERS_CACHE'] = '/app/cache' # Import the necessary modules from flask import Flask, request, render_template from transformers import pipeline # Create a Flask app app = Flask(__name__) # Create a text classification pipeline using a pretrained model classifier = pipeline("text-classification", model="KoalaAI/Text-Moderation") @app.route("/") def home(): # Return a simple HTML page return "Text Classification

Text Classification with Huggingface

" # Import the xml module import xml.etree.ElementTree as ET # Define a route for the classification result @app.route("/classify", methods=["POST"]) def classify(): # Get the text from the web form text = request.form.get("text") # Perform the text classification result = classifier(text)[0] # Extract the label and the score label = result["label"] score = result["score"] # Create a root element for the XML response root = ET.Element("result") # Add sub-elements for the label and the score ET.SubElement(root, "label").text = label ET.SubElement(root, "score").text = str(score) # Convert the XML element to a byte string xml_string = ET.tostring(root) # Return the XML string as the response with the appropriate mimetype return app.response_class(xml_string, mimetype="application/xml") # Run the app in debug mode if __name__ == "__main__": app.run(host="0.0.0.0", port=7860, debug=False)