import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
import time
import timm
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from history_manager import UserHistoryManager
from search_history import create_history_tab, create_history_component
from styles import get_css_styles
from breed_detection import create_detection_tab
from breed_comparison import create_comparison_tab
from breed_recommendation import create_recommendation_tab
from html_templates import (
format_description_html,
format_single_dog_result,
format_multiple_breeds_result,
format_error_message,
format_warning_html,
format_multi_dog_container,
format_breed_details_html,
get_color_scheme,
get_akc_breeds_link
)
from model_architecture import BaseModel, dog_breeds
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
import traceback
history_manager = UserHistoryManager()
class ModelManager:
"""
Singleton class for managing model instances and device allocation
specifically designed for Hugging Face Spaces deployment.
"""
_instance = None
_initialized = False
_yolo_model = None
_breed_model = None
_device = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
if not ModelManager._initialized:
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
ModelManager._initialized = True
@property
def device(self):
if self._device is None:
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
return self._device
@property
def yolo_model(self):
if self._yolo_model is None:
self._yolo_model = YOLO('yolov8x.pt')
return self._yolo_model
@property
def breed_model(self):
if self._breed_model is None:
self._breed_model = BaseModel(
num_classes=len(dog_breeds),
device=self.device
).to(self.device)
checkpoint = torch.load(
'ConvNextV2Base_best_model.pth',
map_location=self.device
)
self._breed_model.load_state_dict(checkpoint['base_model'], strict=False)
self._breed_model.eval()
return self._breed_model
# Initialize model manager
model_manager = ModelManager()
def preprocess_image(image):
"""Preprocesses images for model input"""
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
@spaces.GPU
def predict_single_dog(image):
"""Predicts dog breed for a single image"""
image_tensor = preprocess_image(image).to(model_manager.device)
with torch.no_grad():
logits = model_manager.breed_model(image_tensor)[0]
probs = F.softmax(logits, dim=1)
top5_prob, top5_idx = torch.topk(probs, k=5)
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
probabilities = [prob.item() for prob in top5_prob[0]]
sum_probs = sum(probabilities[:3])
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
return probabilities[0], breeds[:3], relative_probs
def enhanced_preprocess(image, is_standing=False, has_overlap=False):
"""
Enhanced image preprocessing function with special handling for different poses
and overlapping cases.
"""
target_size = 224
w, h = image.size
if is_standing:
if h > w * 1.5:
new_h = target_size
new_w = min(target_size, int(w * (target_size / h)))
new_w = max(new_w, int(target_size * 0.6))
elif has_overlap:
scale = min(target_size/w, target_size/h) * 0.95
new_w = int(w * scale)
new_h = int(h * scale)
else:
scale = min(target_size/w, target_size/h)
new_w = int(w * scale)
new_h = int(h * scale)
resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS)
final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240))
paste_x = (target_size - new_w) // 2
paste_y = (target_size - new_h) // 2
final_image.paste(resized, (paste_x, paste_y))
return final_image
@spaces.GPU
def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
"""
Enhanced multiple dog detection with improved bounding box handling and
intelligent boundary adjustments.
"""
results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0]
img_width, img_height = image.size
detected_boxes = []
# Phase 1: Initial detection and processing
for box in results.boxes:
if box.cls.item() == 16: # Dog class
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
x1, y1, x2, y2 = map(int, xyxy)
w = x2 - x1
h = y2 - y1
detected_boxes.append({
'coords': [x1, y1, x2, y2],
'width': w,
'height': h,
'center_x': (x1 + x2) / 2,
'center_y': (y1 + y2) / 2,
'area': w * h,
'confidence': confidence,
'aspect_ratio': w / h if h != 0 else 1
})
if not detected_boxes:
return [(image, 1.0, [0, 0, img_width, img_height], False)]
# Phase 2: Analysis of detection relationships
avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes)
avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes)
def calculate_iou(box1, box2):
x1 = max(box1['coords'][0], box2['coords'][0])
y1 = max(box1['coords'][1], box2['coords'][1])
x2 = min(box1['coords'][2], box2['coords'][2])
y2 = min(box1['coords'][3], box2['coords'][3])
if x2 <= x1 or y2 <= y1:
return 0.0
intersection = (x2 - x1) * (y2 - y1)
area1 = box1['area']
area2 = box2['area']
return intersection / (area1 + area2 - intersection)
# Phase 3: Processing each detection
processed_boxes = []
overlap_threshold = 0.2
for i, box_info in enumerate(detected_boxes):
x1, y1, x2, y2 = box_info['coords']
w = box_info['width']
h = box_info['height']
center_x = box_info['center_x']
center_y = box_info['center_y']
# Check for overlaps
has_overlap = False
for j, other_box in enumerate(detected_boxes):
if i != j and calculate_iou(box_info, other_box) > overlap_threshold:
has_overlap = True
break
# Adjust expansion strategy
base_expansion = 0.03
max_expansion = 0.05
is_standing = h > 1.5 * w
is_sitting = 0.8 <= h/w <= 1.2
is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5)
if has_overlap:
h_expansion = w_expansion = base_expansion * 0.8
else:
if is_standing:
h_expansion = min(base_expansion * 1.2, max_expansion)
w_expansion = base_expansion
elif is_sitting:
h_expansion = w_expansion = base_expansion
else:
h_expansion = w_expansion = base_expansion * 0.9
# Position compensation
if center_x < img_width * 0.2 or center_x > img_width * 0.8:
w_expansion *= 0.9
if is_abnormal_size:
h_expansion *= 0.8
w_expansion *= 0.8
# Calculate final bounding box
expansion_w = w * w_expansion
expansion_h = h * h_expansion
new_x1 = max(0, center_x - (w + expansion_w)/2)
new_y1 = max(0, center_y - (h + expansion_h)/2)
new_x2 = min(img_width, center_x + (w + expansion_w)/2)
new_y2 = min(img_height, center_y + (h + expansion_h)/2)
# Crop and process image
cropped_image = image.crop((int(new_x1), int(new_y1),
int(new_x2), int(new_y2)))
processed_image = enhanced_preprocess(
cropped_image,
is_standing=is_standing,
has_overlap=has_overlap
)
processed_boxes.append((
processed_image,
box_info['confidence'],
[new_x1, new_y1, new_x2, new_y2],
True
))
return processed_boxes
@spaces.GPU
def predict(image):
"""
Main prediction function that handles both single and multiple dog detection.
Args:
image: PIL Image or numpy array
Returns:
tuple: (html_output, annotated_image, initial_state)
"""
if image is None:
return format_hint_html("Please upload an image to start."), None, None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# 檢測圖片中的物體
dogs = detect_multiple_dogs(image)
color_scheme = get_color_scheme(len(dogs) == 1)
# 準備標註
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
dogs_info = ""
# 處理每個檢測到的物體
for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs):
print(f"Predict processing - Object {i+1}:")
print(f" Is dog: {is_dog}")
print(f" Detection confidence: {detection_confidence:.4f}")
# 如果是狗且進行品種預測,在這裡也加入打印語句
if is_dog:
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
print(f" Breed prediction - Top probability: {top1_prob:.4f}")
print(f" Top breeds: {topk_breeds[:3]}")
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
# 繪製框和標籤
draw.rectangle(box, outline=color, width=4)
label = f"Dog {i+1}" if is_dog else f"Object {i+1}"
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
# 繪製標籤背景和文字
label_x = box[0] + 5
label_y = box[1] + 5
draw.rectangle(
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
fill='white',
outline=color,
width=2
)
draw.text((label_x, label_y), label, fill=color, font=font)
try:
# 首先檢查是否為狗
if not is_dog:
dogs_info += format_not_dog_message(color, i+1)
continue
# 如果是狗,進行品種預測
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
combined_confidence = detection_confidence * top1_prob
# 根據信心度決定輸出格式
if combined_confidence < 0.15:
dogs_info += format_unknown_breed_message(color, i+1)
elif top1_prob >= 0.4:
breed = topk_breeds[0]
description = get_dog_description(breed)
if description is None:
description = {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
dogs_info += format_single_dog_result(breed, description, color)
else:
dogs_info += format_multiple_breeds_result(
topk_breeds,
relative_probs,
color,
i+1,
lambda breed: get_dog_description(breed) or {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
)
except Exception as e:
print(f"Error formatting results for dog {i+1}: {str(e)}")
dogs_info += format_unknown_breed_message(color, i+1)
# 包裝最終的HTML輸出
html_output = format_multi_dog_container(dogs_info)
# 準備初始狀態
initial_state = {
"dogs_info": dogs_info,
"image": annotated_image,
"is_multi_dog": len(dogs) > 1,
"html_output": html_output
}
return html_output, annotated_image, initial_state
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return format_hint_html(error_msg), None, None
def show_details_html(choice, previous_output, initial_state):
"""
Generate detailed HTML view for a selected breed.
Args:
choice: str, Selected breed option
previous_output: str, Previous HTML output
initial_state: dict, Current state information
Returns:
tuple: (html_output, gradio_update, updated_state)
"""
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
html_output = format_breed_details_html(description, breed)
# Update state
initial_state["current_description"] = html_output
initial_state["original_buttons"] = initial_state.get("buttons", [])
return html_output, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg)
return format_hint_html(error_msg), gr.update(visible=True), initial_state
def main():
with gr.Blocks(css=get_css_styles()) as iface:
# Header HTML
gr.HTML("""
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
🐾 PawMatch AI
Your Smart Dog Breed Guide