import gradio as gr import requests from pydantic import BaseModel import time import json import os from typing import Generator, Tuple, List class StepResponse(BaseModel): title: str content: str next_action: str confidence: float def get_available_models() -> List[str]: """Fetch available models from OpenRouter API""" headers = { "Authorization": f"Bearer {os.getenv('OPENROUTER_API_KEY')}", } try: response = requests.get("https://openrouter.ai/api/v1/models", headers=headers) response.raise_for_status() models = response.json() return [model["id"] for model in models.data] except Exception as e: print(f"Error fetching models: {e}") # Fallback to a basic list of known models return [ "anthropic/claude-3-sonnet-20240320", "anthropic/claude-3-opus-20240229", "google/gemini-pro", "meta-llama/llama-2-70b-chat", "mistral/mistral-medium", ] def make_api_call(model: str, system_prompt: str, messages: list, max_tokens: int, is_final_answer: bool = False) -> StepResponse: """Make API call to OpenRouter with specified model""" headers = { "HTTP-Referer": "https://localhost:7860", # Gradio default "X-Title": "Reasoning Chain Demo", "Authorization": f"Bearer {os.getenv('OPENROUTER_API_KEY')}", "Content-Type": "application/json" } url = "https://openrouter.ai/api/v1/chat/completions" request_body = { "model": model, "messages": [ {"role": "system", "content": system_prompt}, *messages ], "max_tokens": max_tokens, "temperature": 0.2, "response_format": {"type": "json_object"} } for attempt in range(3): try: response = requests.post(url, headers=headers, json=request_body) response.raise_for_status() result = response.json() message_content = result['choices'][0]['message']['content'] try: response_data = json.loads(message_content) return StepResponse(**response_data) except json.JSONDecodeError as e: raise ValueError(f"Failed to parse JSON response: {str(e)}") except Exception as e: if attempt == 2: return StepResponse( title="Error", content=f"Failed to generate {'final answer' if is_final_answer else 'step'} after 3 attempts. Error: {str(e)}", next_action="final_answer", confidence=0.5 ) time.sleep(1) def generate_response(prompt: str, model: str, progress=gr.Progress()) -> Generator[str, None, None]: """Generator function that yields formatted markdown for each step""" system_prompt = """You are an AI assistant that explains your reasoning step by step, incorporating dynamic Chain of Thought (CoT), reflection, and verbal reinforcement learning. IMPORTANT: You must output exactly ONE step of reasoning at a time: 1. Each response must contain ONE single step of your reasoning process. 2. For each step, enclose your thoughts within tags as you explore that specific step. 3. After completing your current step, indicate whether you need another step or are ready for the final answer. 4. Do not try to complete multiple steps or the entire analysis in one response. 5. Regularly evaluate your progress, being critical and honest about your reasoning process. 6. Assign a quality score between 0.0 and 1.0 to guide your approach: - 0.8+: Continue current approach - 0.5-0.7: Consider minor adjustments - Below 0.5: Seriously consider backtracking and trying a different approach IMPORTANT: Your response must be a valid JSON object with the following structure: { "title": "Step title or topic", "content": "Detailed step content", "next_action": "One of: continue, reflect, or final_answer", "confidence": float between 0.0 and 1.0 }""" messages = [{"role": "user", "content": prompt}] step_count = 1 markdown_output = "" while True: progress(step_count / 15, f"Step {step_count}") # Show progress step_data = make_api_call(model, system_prompt, messages, 750) # Format step as markdown step_md = f"### Step {step_count}: {step_data.title}\n\n" step_md += f"{step_data.content}\n\n" step_md += f"**Confidence:** {step_data.confidence:.2f}\n\n" step_md += "---\n\n" markdown_output += step_md #yield markdown_output # Update the output incrementally messages.append({"role": "assistant", "content": json.dumps(step_data.model_dump(), indent=2)}) if step_data.next_action == 'final_answer' and step_count < 15: messages.append({"role": "user", "content": "Please continue your analysis with at least 5 more steps before providing the final answer."}) elif step_data.next_action == 'final_answer': break elif step_data.next_action == 'reflect' or step_count % 3 == 0: messages.append({"role": "user", "content": "Please perform a detailed self-reflection on your reasoning so far."}) else: messages.append({"role": "user", "content": "Please continue with the next step in your analysis."}) step_count += 1 yield messages # Generate final answer final_data = make_api_call(model, system_prompt, messages, 750, is_final_answer=True) yield messages #final_md = f"### Final Answer\n\n" #final_md += f"{final_data.content}\n\n" #final_md += f"**Confidence:** {final_data.confidence:.2f}\n\n" #markdown_output += final_md #yield markdown_output def create_interface(): # Check for API key if not os.getenv('OPENROUTER_API_KEY'): raise ValueError("Please set OPENROUTER_API_KEY environment variable") available_models = get_available_models() with gr.Blocks() as interface: gr.Markdown("# AI Reasoning Chain with Model Selection") gr.Markdown("This demo shows chain-of-thought reasoning across different language models.") with gr.Row(): with gr.Column(): model_dropdown = gr.Dropdown( choices=available_models, value=available_models[0], label="Select Model" ) chatbot = gr.Chatbot() query_input = gr.Textbox( lines=5, label="Enter your query:", placeholder="e.g., What are the potential long-term effects of climate change on global agriculture?" ) submit_btn = gr.Button("Generate Response") #output_box = gr.Markdown(label="Response") submit_btn.click( fn=generate_response, inputs=[query_input, model_dropdown], outputs=chatbot ) return interface if __name__ == "__main__": interface = create_interface() interface.launch()