import os import utils import rioxarray as rx from senHub import SenHub from sentinelhub import SHConfig, MimeType config = SHConfig() config.instance_id = '6c220beb-90c4-4131-b658-10cddd8d97b9' config.sh_client_id = '17e7c154-7f2d-4139-b1af-cef762385079' config.sh_client_secret = 'KvbQMKZB85ZWEgWuxqiWIVEvTAQEfoF9' def Download_image_in_given_date(clientName, metric, df, field, date, mime_type = MimeType.TIFF): sen_obj = SenHub(config, mime_type = mime_type) download_path = f'./{clientName}/raw/{metric}/{date}/field_{field}/' bbox = utils.calculate_bbox(df, field) evalscript = utils.Scripts[metric] sen_obj.set_dir(download_path) sen_obj.make_bbox(bbox) sen_obj.make_request(evalscript, date) data = sen_obj.download_data() return data def mask_downladed_image(clientName, metric, df, field, date): download_path = utils.get_downloaded_location_img_path(clientName, metric, date, field) im = rx.open_rasterio(download_path) field_vals = df.loc[df['name'] == field] field_geom = field_vals.geometry crs = field_vals.crs clipped = im.rio.clip(field_geom, crs, drop=True) save_dir_path = f'./{clientName}/processed/{metric}/{date}/field_{field}/' os.makedirs(save_dir_path, exist_ok=True) save_tiff_path = save_dir_path + 'masked.tiff' clipped.rio.to_raster(save_tiff_path) return save_tiff_path def convert_maske_image_to_geodataframe(clientName, metric, df, field, date, crs): imagePath = utils.get_masked_location_img_path(clientName, metric, date, field) im = rx.open_rasterio(imagePath) gdf = utils.tiff_to_geodataframe(im, metric, date, crs) save_dir_path = f'./{clientName}/curated/{metric}/{date}/field_{field}/' os.makedirs(save_dir_path, exist_ok=True) save_geojson_path = save_dir_path + 'masked.geojson' gdf.to_file(save_geojson_path, driver='GeoJSON') return save_geojson_path