import spaces
import argparse
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
from PIL import Image
import gradio as gr
import shutil
import librosa
import python_speech_features
import time
from LIA_Model import LIA_Model
import os
from tqdm import tqdm
import argparse
import numpy as np
from torchvision import transforms
from templates import *
import argparse
import shutil
from moviepy.editor import *
import librosa
import python_speech_features
import importlib.util
import time
import os
import time
import numpy as np

# Disable Gradio analytics to avoid network-related issues
gr.analytics_enabled = False

def check_package_installed(package_name):
    package_spec = importlib.util.find_spec(package_name)
    if package_spec is None:
        print(f"{package_name} is not installed.")
        return False
    else:
        print(f"{package_name} is installed.")
        return True

def frames_to_video(input_path, audio_path, output_path, fps=25):
    image_files = [os.path.join(input_path, img) for img in sorted(os.listdir(input_path))]
    clips = [ImageClip(m).set_duration(1/fps) for m in image_files]
    video = concatenate_videoclips(clips, method="compose")

    audio = AudioFileClip(audio_path)
    final_video = video.set_audio(audio)
    final_video.write_videofile(output_path, fps=fps, codec='libx264', audio_codec='aac')

def load_image(filename, size):
    img = Image.open(filename).convert('RGB')
    img = img.resize((size, size))
    img = np.asarray(img)
    img = np.transpose(img, (2, 0, 1))  # 3 x 256 x 256
    return img / 255.0

def img_preprocessing(img_path, size):
    img = load_image(img_path, size)  # [0, 1]
    img = torch.from_numpy(img).unsqueeze(0).float()  # [0, 1]
    imgs_norm = (img - 0.5) * 2.0  # [-1, 1]
    return imgs_norm

def saved_image(img_tensor, img_path):
    toPIL = transforms.ToPILImage()
    img = toPIL(img_tensor.detach().cpu().squeeze(0))  # 使用squeeze(0)来移除批次维度
    img.save(img_path)

def main(args):
    frames_result_saved_path = os.path.join(args.result_path, 'frames')
    os.makedirs(frames_result_saved_path, exist_ok=True)
    test_image_name = os.path.splitext(os.path.basename(args.test_image_path))[0]
    audio_name = os.path.splitext(os.path.basename(args.test_audio_path))[0]
    predicted_video_256_path = os.path.join(args.result_path,  f'{test_image_name}-{audio_name}.mp4')
    predicted_video_512_path = os.path.join(args.result_path,  f'{test_image_name}-{audio_name}_SR.mp4')

    #======Loading Stage 1 model=========
    lia = LIA_Model(motion_dim=args.motion_dim, fusion_type='weighted_sum')
    lia.load_lightning_model(args.stage1_checkpoint_path)
    lia.to('cuda')
    #============================

    conf = ffhq256_autoenc()
    conf.seed = args.seed
    conf.decoder_layers = args.decoder_layers
    conf.infer_type = args.infer_type
    conf.motion_dim = args.motion_dim
    
    if args.infer_type == 'mfcc_full_control':
        conf.face_location=True
        conf.face_scale=True
        conf.mfcc = True
    elif args.infer_type == 'mfcc_pose_only':
        conf.face_location=False
        conf.face_scale=False
        conf.mfcc = True
    elif args.infer_type == 'hubert_pose_only':
        conf.face_location=False
        conf.face_scale=False
        conf.mfcc = False
    elif args.infer_type == 'hubert_audio_only':
        conf.face_location=False
        conf.face_scale=False
        conf.mfcc = False
    elif args.infer_type == 'hubert_full_control':
        conf.face_location=True
        conf.face_scale=True
        conf.mfcc = False
    else:
        print('Type NOT Found!')
        exit(0)
        
    if not os.path.exists(args.test_image_path):
        print(f'{args.test_image_path} does not exist!')
        exit(0)
    
    if not os.path.exists(args.test_audio_path):
        print(f'{args.test_audio_path} does not exist!')
        exit(0)
    
    img_source = img_preprocessing(args.test_image_path, args.image_size).to('cuda')
    one_shot_lia_start, one_shot_lia_direction, feats = lia.get_start_direction_code(img_source, img_source, img_source, img_source)

    #======Loading Stage 2 model=========
    model = LitModel(conf)
    state = torch.load(args.stage2_checkpoint_path, map_location='cpu')
    model.load_state_dict(state, strict=True)
    model.ema_model.eval()
    model.ema_model.to('cuda')
    #=================================
    
    #======Audio Input=========
    if conf.infer_type.startswith('mfcc'):
        # MFCC features
        wav, sr = librosa.load(args.test_audio_path, sr=16000)
        input_values = python_speech_features.mfcc(signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01)
        d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
        d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
        audio_driven_obj = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2))
        frame_start, frame_end = 0, int(audio_driven_obj.shape[0]/4)
        audio_start, audio_end = int(frame_start * 4), int(frame_end * 4) # The video frame is fixed to 25 hz and the audio is fixed to 100 hz
        
        audio_driven = torch.Tensor(audio_driven_obj[audio_start:audio_end,:]).unsqueeze(0).float().to('cuda')
        
    elif conf.infer_type.startswith('hubert'):
        # Hubert features
        if not os.path.exists(args.test_hubert_path):
            
            if not check_package_installed('transformers'):
                print('Please install transformers module first.')
                exit(0)
            hubert_model_path = 'ckpt/chinese-hubert-large'
            if not os.path.exists(hubert_model_path):
                print('Please download the hubert weight into the ckpts path first.')
                exit(0)
            print('You did not extract the audio features in advance, extracting online now, which will increase processing delay')

            start_time = time.time()

            # load hubert model
            from transformers import Wav2Vec2FeatureExtractor, HubertModel
            audio_model = HubertModel.from_pretrained(hubert_model_path).to('cuda')
            feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_path)
            audio_model.feature_extractor._freeze_parameters()
            audio_model.eval()

            # hubert model forward pass
            audio, sr = librosa.load(args.test_audio_path, sr=16000)
            input_values = feature_extractor(audio, sampling_rate=16000, padding=True, do_normalize=True, return_tensors="pt").input_values
            input_values = input_values.to('cuda')
            ws_feats = []
            with torch.no_grad():
                outputs = audio_model(input_values, output_hidden_states=True)
                for i in range(len(outputs.hidden_states)):
                    ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy())
                ws_feat_obj = np.array(ws_feats)
                ws_feat_obj = np.squeeze(ws_feat_obj, 1)
                ws_feat_obj = np.pad(ws_feat_obj, ((0, 0), (0, 1), (0, 0)), 'edge') # align the audio length with video frame
            
            execution_time = time.time() - start_time
            print(f"Extraction Audio Feature: {execution_time:.2f} Seconds")

            audio_driven_obj = ws_feat_obj
        else:
            print(f'Using audio feature from path: {args.test_hubert_path}')
            audio_driven_obj = np.load(args.test_hubert_path)

        frame_start, frame_end = 0, int(audio_driven_obj.shape[1]/2)
        audio_start, audio_end = int(frame_start * 2), int(frame_end * 2) # The video frame is fixed to 25 hz and the audio is fixed to 50 hz
        
        audio_driven = torch.Tensor(audio_driven_obj[:,audio_start:audio_end,:]).unsqueeze(0).float().to('cuda')
    #============================
    
    # Diffusion Noise
    noisyT = torch.randn((1,frame_end, args.motion_dim)).to('cuda')
    
    #======Inputs for Attribute Control=========
    if os.path.exists(args.pose_driven_path):
        pose_obj = np.load(args.pose_driven_path)

        if len(pose_obj.shape) != 2:
            print('please check your pose information. The shape must be like (T, 3).')
            exit(0)
        if pose_obj.shape[1] != 3:
            print('please check your pose information. The shape must be like (T, 3).')
            exit(0)

        if pose_obj.shape[0] >= frame_end:
            pose_obj = pose_obj[:frame_end,:]
        else:
            padding = np.tile(pose_obj[-1, :], (frame_end - pose_obj.shape[0], 1))
            pose_obj = np.vstack((pose_obj, padding))
            
        pose_signal = torch.Tensor(pose_obj).unsqueeze(0).to('cuda') / 90 # 90 is for normalization here
    else:
        yaw_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.pose_yaw
        pitch_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.pose_pitch
        roll_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.pose_roll
        pose_signal = torch.cat((yaw_signal, pitch_signal, roll_signal), dim=-1)
    
    pose_signal = torch.clamp(pose_signal, -1, 1)

    face_location_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.face_location
    face_scae_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.face_scale
    #===========================================

    start_time = time.time()

    #======Diffusion Denosing Process=========
    generated_directions = model.render(one_shot_lia_start, one_shot_lia_direction, audio_driven, face_location_signal, face_scae_signal, pose_signal, noisyT, args.step_T, control_flag=args.control_flag)
    #=========================================
    
    execution_time = time.time() - start_time
    print(f"Motion Diffusion Model: {execution_time:.2f} Seconds")

    generated_directions = generated_directions.detach().cpu().numpy()
    
    start_time = time.time()
    #======Rendering images frame-by-frame=========
    for pred_index in tqdm(range(generated_directions.shape[1])):
        ori_img_recon = lia.render(one_shot_lia_start, torch.Tensor(generated_directions[:,pred_index,:]).to('cuda'), feats)
        ori_img_recon = ori_img_recon.clamp(-1, 1)
        wav_pred = (ori_img_recon.detach() + 1) / 2
        saved_image(wav_pred, os.path.join(frames_result_saved_path, "%06d.png"%(pred_index)))
    #==============================================
    
    execution_time = time.time() - start_time
    print(f"Renderer Model: {execution_time:.2f} Seconds")

    frames_to_video(frames_result_saved_path, args.test_audio_path, predicted_video_256_path)
    
    shutil.rmtree(frames_result_saved_path)
    
    # Enhancer
    if args.face_sr and check_package_installed('gfpgan'):
        from face_sr.face_enhancer import enhancer_list
        import imageio

        # Super-resolution
        imageio.mimsave(predicted_video_512_path+'.tmp.mp4', enhancer_list(predicted_video_256_path, method='gfpgan', bg_upsampler=None), fps=float(25))
        
        # Merge audio and video
        video_clip = VideoFileClip(predicted_video_512_path+'.tmp.mp4')
        audio_clip = AudioFileClip(predicted_video_256_path)
        final_clip = video_clip.set_audio(audio_clip)
        final_clip.write_videofile(predicted_video_512_path, codec='libx264', audio_codec='aac')
        
        os.remove(predicted_video_512_path+'.tmp.mp4')
    
    if args.face_sr:
        return predicted_video_256_path, predicted_video_512_path
    else:
        return predicted_video_256_path, predicted_video_256_path

@spaces.GPU
def generate_video(uploaded_img, uploaded_audio, infer_type, 
        pose_yaw, pose_pitch, pose_roll, face_location, face_scale, step_T, face_sr, seed):
    if uploaded_img is None or uploaded_audio is None:
        return None, gr.Markdown("Error: Input image or audio file is empty. Please check and upload both files.")
    
    model_mapping = {
        "mfcc_pose_only": "ckpt/stage2_pose_only_mfcc.ckpt",
        "mfcc_full_control": "ckpt/stage2_more_controllable_mfcc.ckpt",
        "hubert_audio_only": "ckpt/stage2_audio_only_hubert.ckpt",
        "hubert_pose_only": "ckpt/stage2_pose_only_hubert.ckpt",
        "hubert_full_control": "ckpt/stage2_full_control_hubert.ckpt",
    }

    stage2_checkpoint_path = model_mapping.get(infer_type, "default_checkpoint.ckpt")
    try:
        args = argparse.Namespace(
            infer_type=infer_type,
            test_image_path=uploaded_img,
            test_audio_path=uploaded_audio,
            test_hubert_path='',
            result_path='./outputs/',
            stage1_checkpoint_path='ckpt/stage1.ckpt',
            stage2_checkpoint_path=stage2_checkpoint_path,
            seed=seed,
            control_flag=True,
            pose_yaw=pose_yaw,
            pose_pitch=pose_pitch,
            pose_roll=pose_roll,
            face_location=face_location,
            pose_driven_path='not_supported_in_this_mode',
            face_scale=face_scale,
            step_T=step_T,
            image_size=256,
            device='cuda',
            motion_dim=20,
            decoder_layers=2,
            face_sr=face_sr
        )

        output_256_video_path, output_512_video_path = main(args)

        if not os.path.exists(output_256_video_path):
            return None, gr.Markdown("Error: Video generation failed. Please check your inputs and try again.")
        if output_256_video_path == output_512_video_path:
            return gr.Video(value=output_256_video_path), None, gr.Markdown("Video (256*256 only) generated successfully!")
        return gr.Video(value=output_256_video_path), gr.Video(value=output_512_video_path), gr.Markdown("Video generated successfully!")

    except Exception as e:
        return None, None, gr.Markdown(f"Error: An unexpected error occurred - {str(e)}")

default_values = {
    "pose_yaw": 0,
    "pose_pitch": 0,
    "pose_roll": 0,
    "face_location": 0.5,
    "face_scale": 0.5,
    "step_T": 50,
    "seed": 0,
}

with gr.Blocks() as demo:
    gr.Markdown('# AniTalker')
    gr.Markdown('![]()')
    with gr.Row():
        with gr.Column():
            uploaded_img = gr.Image(type="filepath", label="Reference Image")
            uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
        with gr.Column():
            output_video_256 = gr.Video(label="Generated Video (256)")
            output_video_512 = gr.Video(label="Generated Video (512)")
            output_message = gr.Markdown()
        


    generate_button = gr.Button("Generate Video")

    with gr.Accordion("Configuration", open=True):
        infer_type = gr.Dropdown(
            label="Inference Type",
            choices=['mfcc_pose_only', 'mfcc_full_control', 'hubert_audio_only', 'hubert_pose_only'],
            value='hubert_audio_only'
        )
        face_sr = gr.Checkbox(label="Enable Face Super-Resolution (512*512)", value=False)
        seed = gr.Number(label="Seed", value=default_values["seed"])
        pose_yaw = gr.Slider(label="pose_yaw", minimum=-1, maximum=1, value=default_values["pose_yaw"])
        pose_pitch = gr.Slider(label="pose_pitch", minimum=-1, maximum=1, value=default_values["pose_pitch"])
        pose_roll = gr.Slider(label="pose_roll", minimum=-1, maximum=1, value=default_values["pose_roll"])
        face_location = gr.Slider(label="face_location", minimum=0, maximum=1, value=default_values["face_location"])
        face_scale = gr.Slider(label="face_scale", minimum=0, maximum=1, value=default_values["face_scale"])
        step_T = gr.Slider(label="step_T", minimum=1, maximum=100, step=1, value=default_values["step_T"])
        

    generate_button.click(
        generate_video,
        inputs=[
            uploaded_img, uploaded_audio, infer_type, 
            pose_yaw, pose_pitch, pose_roll, face_location, face_scale, step_T, face_sr, seed
        ],
        outputs=[output_video_256, output_video_512, output_message]
    )

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='EchoMimic')
    parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
    parser.add_argument('--server_port', type=int, default=3001, help='Server port')
    args = parser.parse_args()

    demo.launch()