import math import torch from torch import nn from torch.nn import functional as F import numpy as np def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return F.leaky_relu(input + bias, negative_slope) * scale class FusedLeakyReLU(nn.Module): def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): super().__init__() self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1)) self.negative_slope = negative_slope self.scale = scale def forward(self, input): out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) return out def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, minor, in_h, in_w = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, minor, in_h, 1, in_w, 1) out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0]) out = out.view(-1, minor, in_h * up_y, in_w * up_x) out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ] out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) return out[:, :, ::down_y, ::down_x] def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) class PixelNorm(nn.Module): def __init__(self): super().__init__() def forward(self, input): return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8) class MotionPixelNorm(nn.Module): def __init__(self): super().__init__() def forward(self, input): return input * torch.rsqrt(torch.mean(input ** 2, dim=2, keepdim=True) + 1e-8) def make_kernel(k): k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k class Upsample(nn.Module): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) * (factor ** 2) self.register_buffer('kernel', kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 self.pad = (pad0, pad1) def forward(self, input): return upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) class Downsample(nn.Module): def __init__(self, kernel, factor=2): super().__init__() self.factor = factor kernel = make_kernel(kernel) self.register_buffer('kernel', kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 pad1 = p // 2 self.pad = (pad0, pad1) def forward(self, input): return upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad) class Blur(nn.Module): def __init__(self, kernel, pad, upsample_factor=1): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * (upsample_factor ** 2) self.register_buffer('kernel', kernel) self.pad = pad def forward(self, input): return upfirdn2d(input, self.kernel, pad=self.pad) class EqualConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True): super().__init__() self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size)) self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) self.stride = stride self.padding = padding if bias: self.bias = nn.Parameter(torch.zeros(out_channel)) else: self.bias = None def forward(self, input): return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding, ) def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' ) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.activation = activation self.scale = (1 / math.sqrt(in_dim)) * lr_mul self.lr_mul = lr_mul def forward(self, input): if self.activation: out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, self.bias * self.lr_mul) else: out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) return out def __repr__(self): return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})') class ScaledLeakyReLU(nn.Module): def __init__(self, negative_slope=0.2): super().__init__() self.negative_slope = negative_slope def forward(self, input): return F.leaky_relu(input, negative_slope=self.negative_slope) class ModulatedConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, downsample=False, blur_kernel=[1, 3, 3, 1], ): super().__init__() self.eps = 1e-8 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.upsample = upsample self.downsample = downsample if upsample: factor = 2 p = (len(blur_kernel) - factor) - (kernel_size - 1) pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 + 1 self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 self.blur = Blur(blur_kernel, pad=(pad0, pad1)) fan_in = in_channel * kernel_size ** 2 self.scale = 1 / math.sqrt(fan_in) self.padding = kernel_size // 2 self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)) self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) self.demodulate = demodulate def __repr__(self): return ( f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, ' f'upsample={self.upsample}, downsample={self.downsample})' ) def forward(self, input, style): batch, in_channel, height, width = input.shape style = self.modulation(style).view(batch, 1, in_channel, 1, 1) weight = self.scale * self.weight * style if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) weight = weight.view(batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size) if self.upsample: input = input.view(1, batch * in_channel, height, width) weight = weight.view(batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size) weight = weight.transpose(1, 2).reshape(batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size) out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) out = self.blur(out) elif self.downsample: input = self.blur(input) _, _, height, width = input.shape input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) else: input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=self.padding, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out class NoiseInjection(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.zeros(1)) def forward(self, image, noise=None): if noise is None: return image else: return image + self.weight * noise class ConstantInput(nn.Module): def __init__(self, channel, size=4): super().__init__() self.input = nn.Parameter(torch.randn(1, channel, size, size)) def forward(self, input): batch = input.shape[0] out = self.input.repeat(batch, 1, 1, 1) return out class StyledConv(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, style_dim, upsample=False, blur_kernel=[1, 3, 3, 1], demodulate=True): super().__init__() self.conv = ModulatedConv2d( in_channel, out_channel, kernel_size, style_dim, upsample=upsample, blur_kernel=blur_kernel, demodulate=demodulate, ) self.noise = NoiseInjection() self.activate = FusedLeakyReLU(out_channel) def forward(self, input, style, noise=None): out = self.conv(input, style) out = self.noise(out, noise=noise) out = self.activate(out) return out class ConvLayer(nn.Sequential): def __init__( self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, ): layers = [] if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 layers.append(Blur(blur_kernel, pad=(pad0, pad1))) stride = 2 self.padding = 0 else: stride = 1 self.padding = kernel_size // 2 layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, bias=bias and not activate)) if activate: if bias: layers.append(FusedLeakyReLU(out_channel)) else: layers.append(ScaledLeakyReLU(0.2)) super().__init__(*layers) class ToRGB(nn.Module): def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): super().__init__() if upsample: self.upsample = Upsample(blur_kernel) self.conv = ConvLayer(in_channel, 3, 1) self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) def forward(self, input, skip=None): out = self.conv(input) out = out + self.bias if skip is not None: skip = self.upsample(skip) out = out + skip return out class ToFlow(nn.Module): def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): super().__init__() if upsample: self.upsample = Upsample(blur_kernel) self.style_dim = style_dim self.in_channel = in_channel self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False) self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) def forward(self, input, style, feat, skip=None): # input 是来自上一层的 feature, style 是 512 的 condition, feat 是来自于 unet 的跳层 out = self.conv(input, style) out = out + self.bias # warping xs = np.linspace(-1, 1, input.size(2)) xs = np.meshgrid(xs, xs) xs = np.stack(xs, 2) xs = torch.tensor(xs, requires_grad=False).float().unsqueeze(0).repeat(input.size(0), 1, 1, 1).to(input.device) # import pdb;pdb.set_trace() if skip is not None: skip = self.upsample(skip) out = out + skip sampler = torch.tanh(out[:, 0:2, :, :]) mask = torch.sigmoid(out[:, 2:3, :, :]) flow = sampler.permute(0, 2, 3, 1) + xs # xs在这里相当于一个 location 的位置 feat_warp = F.grid_sample(feat, flow) * mask # import pdb;pdb.set_trace() return feat_warp, feat_warp + input * (1.0 - mask), out class Direction(nn.Module): def __init__(self, motion_dim): super(Direction, self).__init__() self.weight = nn.Parameter(torch.randn(512, motion_dim)) def forward(self, input): # input: (bs*t) x 512 weight = self.weight + 1e-8 Q, R = torch.qr(weight) # get eignvector, orthogonal [n1, n2, n3, n4] if input is None: return Q else: input_diag = torch.diag_embed(input) # alpha, diagonal matrix out = torch.matmul(input_diag, Q.T) out = torch.sum(out, dim=1) return out class Synthesis(nn.Module): def __init__(self, size, style_dim, motion_dim, blur_kernel=[1, 3, 3, 1], channel_multiplier=1): super(Synthesis, self).__init__() self.size = size self.style_dim = style_dim self.motion_dim = motion_dim self.direction = Direction(motion_dim) # Linear Motion Decomposition (LMD) from LIA self.channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256 * channel_multiplier, 128: 128 * channel_multiplier, 256: 64 * channel_multiplier, 512: 32 * channel_multiplier, 1024: 16 * channel_multiplier, } self.input = ConstantInput(self.channels[4]) self.conv1 = StyledConv(self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel) self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False) self.log_size = int(math.log(size, 2)) self.num_layers = (self.log_size - 2) * 2 + 1 self.convs = nn.ModuleList() self.upsamples = nn.ModuleList() self.to_rgbs = nn.ModuleList() self.to_flows = nn.ModuleList() in_channel = self.channels[4] for i in range(3, self.log_size + 1): out_channel = self.channels[2 ** i] self.convs.append(StyledConv(in_channel, out_channel, 3, style_dim, upsample=True, blur_kernel=blur_kernel)) self.convs.append(StyledConv(out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel)) self.to_rgbs.append(ToRGB(out_channel, style_dim)) self.to_flows.append(ToFlow(out_channel, style_dim)) in_channel = out_channel self.n_latent = self.log_size * 2 - 2 def forward(self, source_before_decoupling, target_motion, feats): directions = self.direction(target_motion) latent = source_before_decoupling + directions # wa + directions inject_index = self.n_latent latent = latent.unsqueeze(1).repeat(1, inject_index, 1) out = self.input(latent) out = self.conv1(out, latent[:, 0]) i = 1 for conv1, conv2, to_rgb, to_flow, feat in zip(self.convs[::2], self.convs[1::2], self.to_rgbs, self.to_flows, feats): out = conv1(out, latent[:, i]) out = conv2(out, latent[:, i + 1]) if out.size(2) == 8: out_warp, out, skip_flow = to_flow(out, latent[:, i + 2], feat) skip = to_rgb(out_warp) else: out_warp, out, skip_flow = to_flow(out, latent[:, i + 2], feat, skip_flow) skip = to_rgb(out_warp, skip) i += 2 img = skip return img