#pip install streamlit #pip install pandas #pip install sklearn # IMPORT STATEMENTS import streamlit as st import pandas as pd from PIL import Image import numpy as np import matplotlib.pyplot as plt import plotly.figure_factory as ff from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split import seaborn as sns df = pd.read_csv(r'/Users/rusiththarindu/Desktop/Final Year Project/diabetes.csv') # HEADINGS st.title('Diabetes Checkup') st.sidebar.header('Patient Data') st.subheader('Training Data Stats') st.write(df.describe()) # X AND Y DATA x = df.drop(['Outcome'], axis = 1) y = df.iloc[:, -1] x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2, random_state = 0) # FUNCTION def user_report(): pregnancies = st.sidebar.slider('Pregnancies', 0,17, 3 ) glucose = st.sidebar.slider('Glucose', 0,200, 120 ) bp = st.sidebar.slider('Blood Pressure', 0,122, 70 ) skinthickness = st.sidebar.slider('Skin Thickness', 0,100, 20 ) insulin = st.sidebar.slider('Insulin', 0,846, 79 ) bmi = st.sidebar.slider('BMI', 0,67, 20 ) dpf = st.sidebar.slider('Diabetes Pedigree Function', 0.0,2.4, 0.47 ) age = st.sidebar.slider('Age', 21,88, 33 ) user_report_data = { 'pregnancies':pregnancies, 'glucose':glucose, 'bp':bp, 'skinthickness':skinthickness, 'insulin':insulin, 'bmi':bmi, 'dpf':dpf, 'age':age } report_data = pd.DataFrame(user_report_data, index=[0]) return report_data # PATIENT DATA user_data = user_report() st.subheader('Patient Data') st.write(user_data) # MODEL rf = RandomForestClassifier() rf.fit(x_train, y_train) user_result = rf.predict(user_data) # VISUALISATIONS st.title('Visualised Patient Report') # COLOR FUNCTION if user_result[0]==0: color = 'blue' else: color = 'red' # Age vs Pregnancies st.header('Pregnancy count Graph (Others vs Yours)') fig_preg = plt.figure() ax1 = sns.scatterplot(x = 'Age', y = 'Pregnancies', data = df, hue = 'Outcome', palette = 'Greens') ax2 = sns.scatterplot(x = user_data['age'], y = user_data['pregnancies'], s = 150, color = color) plt.xticks(np.arange(10,100,5)) plt.yticks(np.arange(0,20,2)) plt.title('0 - Healthy & 1 - Unhealthy') st.pyplot(fig_preg) # Age vs Glucose st.header('Glucose Value Graph (Others vs Yours)') fig_glucose = plt.figure() ax3 = sns.scatterplot(x = 'Age', y = 'Glucose', data = df, hue = 'Outcome' , palette='magma') ax4 = sns.scatterplot(x = user_data['age'], y = user_data['glucose'], s = 150, color = color) plt.xticks(np.arange(10,100,5)) plt.yticks(np.arange(0,220,10)) plt.title('0 - Healthy & 1 - Unhealthy') st.pyplot(fig_glucose) # Age vs Bp st.header('Blood Pressure Value Graph (Others vs Yours)') fig_bp = plt.figure() ax5 = sns.scatterplot(x = 'Age', y = 'BloodPressure', data = df, hue = 'Outcome', palette='Reds') ax6 = sns.scatterplot(x = user_data['age'], y = user_data['bp'], s = 150, color = color) plt.xticks(np.arange(10,100,5)) plt.yticks(np.arange(0,130,10)) plt.title('0 - Healthy & 1 - Unhealthy') st.pyplot(fig_bp) # Age vs St st.header('Skin Thickness Value Graph (Others vs Yours)') fig_st = plt.figure() ax7 = sns.scatterplot(x = 'Age', y = 'SkinThickness', data = df, hue = 'Outcome', palette='Blues') ax8 = sns.scatterplot(x = user_data['age'], y = user_data['skinthickness'], s = 150, color = color) plt.xticks(np.arange(10,100,5)) plt.yticks(np.arange(0,110,10)) plt.title('0 - Healthy & 1 - Unhealthy') st.pyplot(fig_st) # Age vs Insulin st.header('Insulin Value Graph (Others vs Yours)') fig_i = plt.figure() ax9 = sns.scatterplot(x = 'Age', y = 'Insulin', data = df, hue = 'Outcome', palette='rocket') ax10 = sns.scatterplot(x = user_data['age'], y = user_data['insulin'], s = 150, color = color) plt.xticks(np.arange(10,100,5)) plt.yticks(np.arange(0,900,50)) plt.title('0 - Healthy & 1 - Unhealthy') st.pyplot(fig_i) # Age vs BMI st.header('BMI Value Graph (Others vs Yours)') fig_bmi = plt.figure() ax11 = sns.scatterplot(x = 'Age', y = 'BMI', data = df, hue = 'Outcome', palette='rainbow') ax12 = sns.scatterplot(x = user_data['age'], y = user_data['bmi'], s = 150, color = color) plt.xticks(np.arange(10,100,5)) plt.yticks(np.arange(0,70,5)) plt.title('0 - Healthy & 1 - Unhealthy') st.pyplot(fig_bmi) # Age vs Dpf st.header('DPF Value Graph (Others vs Yours)') fig_dpf = plt.figure() ax13 = sns.scatterplot(x = 'Age', y = 'DiabetesPedigreeFunction', data = df, hue = 'Outcome', palette='YlOrBr') ax14 = sns.scatterplot(x = user_data['age'], y = user_data['dpf'], s = 150, color = color) plt.xticks(np.arange(10,100,5)) plt.yticks(np.arange(0,3,0.2)) plt.title('0 - Healthy & 1 - Unhealthy') st.pyplot(fig_dpf) # OUTPUT st.subheader('Your Report: ') output='' if user_result[0]==0: output = 'You are not Diabetic' else: output = 'You are Diabetic' st.title(output) st.subheader('Accuracy: ') st.write(str(accuracy_score(y_test, rf.predict(x_test))*100)+'%')