# gradio imports import gradio as gr import os import time # Imports import os import openai from langchain.chains import ConversationalRetrievalChain from langchain.embeddings.openai import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from langchain.document_loaders import TextLoader from langchain.memory import ConversationBufferMemory from langchain.chat_models import ChatOpenAI css=""" #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """

Chat about Dialogues • Games • AI • AI Regulation

Chat is built from:
This is a Dialogue (https://www.jonnyjohnson.com/this-is-a-dialogue)
Game-Making articles (https://dialogues-ai.github.io/papers/docs/ai_regulation/gamemaking)
As well as 25 blog posts contributed to BMC

""" prompt_hints = """

Some things you can ask:
Should I be worried about AIs?
How do we improve the games between AIs and humans?
What is a dialogue?
Do you agree that everything is language?

""" # from index import PERSIST_DIRECTORY, CalendarIndex PERSIST_DIRECTORY = "chromadb" # Create embeddings # # create memory object from langchain.memory import ConversationBufferMemory memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) def loading_pdf(): return "Loading..." def loading_database(open_ai_key): if open_ai_key is not None: if os.path.exists(PERSIST_DIRECTORY): embeddings = OpenAIEmbeddings(openai_api_key=open_ai_key) docs_retriever = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings) global qa_chain qa_chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.0, openai_api_key=open_ai_key), retriever=docs_retriever.as_retriever(), memory=memory, return_source_documents=False ) return "Ready" else: return "You forgot OpenAI API key" def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0], history) history[-1][1] = "" for character in response: history[-1][1] += character time.sleep(0.05) yield history def infer(question, history): res = [] for human, ai in history[:-1]: pair = (human, ai) res.append(pair) chat_history = res query = question result = qa_chain({"question": query, "chat_history": chat_history}) return result["answer"] def update_message(question_component, chat_prompts): question_component.value = chat_prompts.get_name() return None with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) with gr.Column(): with gr.Row(): openai_key = gr.Textbox(label="OpenAI API key", type="password") submit_api_key = gr.Button("Submit") with gr.Row(): langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") submit_btn = gr.Button("Send Message") gr.HTML(prompt_hints) submit_api_key.click(loading_database, inputs=[openai_key], outputs=[langchain_status], queue=False) # demo.load(loading_database, None, langchain_status) question.submit(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot ) submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot) demo.queue(concurrency_count=2, max_size=20).launch()