from transformers import AutoModel, AutoTokenizer import streamlit as st from PIL import Image import re import os import uuid # Load the model and tokenizer only once if "model" not in st.session_state or "tokenizer" not in st.session_state: @st.cache_resource def load_model(model_name): if model_name == "OCR for English or Hindi (CPU)": tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True) model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id) model = model.eval() elif model_name == "OCR for English (GPU)": tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id) model = model.eval().to('cuda') return model, tokenizer # Load and store in session state model_option = st.selectbox("Select Model", ["OCR for English or Hindi (CPU)", "OCR for English (GPU)"]) model, tokenizer = load_model(model_option) st.session_state["model"] = model st.session_state["tokenizer"] = tokenizer else: model = st.session_state["model"] tokenizer = st.session_state["tokenizer"] # Function to run the GOT model for multilingual OCR def run_ocr(image, model, tokenizer): unique_id = str(uuid.uuid4()) image_path = f"{unique_id}.png" # Save image to disk image.save(image_path) try: # Use the model to extract text from the image res = model.chat(tokenizer, image_path, ocr_type='ocr') if isinstance(res, str): return res else: return str(res) except Exception as e: return f"Error: {str(e)}" finally: # Clean up the saved image if os.path.exists(image_path): os.remove(image_path) # Function to highlight keyword in text def highlight_text(text, search_term): if not search_term: return text pattern = re.compile(re.escape(search_term), re.IGNORECASE) return pattern.sub(lambda m: f'{m.group()}', text) # Streamlit App st.title("GOT-OCR Multilingual Demo") st.write("Upload an image for OCR") # Upload image uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"]) if uploaded_image: image = Image.open(uploaded_image) st.image(image, caption='Uploaded Image', use_column_width=True) if st.button("Run OCR"): with st.spinner("Processing..."): # Run OCR and store the result in session state result_text = run_ocr(image, model, tokenizer) if "Error" not in result_text: st.session_state["extracted_text"] = result_text # Store the result in session state else: st.error(result_text) # Display the extracted text if it exists in session state if "extracted_text" in st.session_state: extracted_text = st.session_state["extracted_text"] st.subheader("Extracted Text:") st.text(extracted_text) # Display the raw extracted text # Keyword input for search search_term = st.text_input("Enter a word or phrase to highlight:") # Highlight keyword in the extracted text if search_term: highlighted_text = highlight_text(extracted_text, search_term) # Display the highlighted text using markdown st.markdown(highlighted_text, unsafe_allow_html=True)