"""Prepare and train a model on a dataset. Can also infer from a model or merge lora""" import importlib import logging import os import random import signal import sys from pathlib import Path from typing import Any, Dict, List, Optional, Union import fire import torch import yaml from transformers import GenerationConfig from axolotl.utils.data import load_prepare_datasets from axolotl.utils.dict import DictDefault from axolotl.utils.models import load_model, load_tokenizer # add src to the pythonpath so we don't need to pip install this from axolotl.utils.tokenization import check_dataset_labels from axolotl.utils.trainer import setup_trainer from axolotl.utils.validation import validate_config from axolotl.utils.wandb import setup_wandb_env_vars project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) src_dir = os.path.join(project_root, "src") sys.path.insert(0, src_dir) logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO")) DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared" def choose_device(cfg): def get_device(): try: if torch.cuda.is_available(): return f"cuda:{cfg.local_rank}" if torch.backends.mps.is_available(): return "mps" raise SystemError("No CUDA/mps device found") except Exception: # pylint: disable=broad-exception-caught return "cpu" cfg.device = get_device() if cfg.device == "cuda": cfg.device_map = {"": cfg.local_rank} else: cfg.device_map = {"": cfg.device} def get_multi_line_input() -> Optional[str]: print("Give me an instruction (Ctrl + D to finish): ") instruction = "" for line in sys.stdin: instruction += line # pylint: disable=consider-using-join # instruction = pathlib.Path("/proc/self/fd/0").read_text() return instruction def do_inference(cfg, model, tokenizer, prompter="AlpacaPrompter"): tokenizer.add_special_tokens({"unk_token": ""}) tokenizer.add_special_tokens({"bos_token": ""}) tokenizer.add_special_tokens({"eos_token": ""}) prompter_module = getattr(importlib.import_module("axolotl.prompters"), prompter) while True: # support for multiline inputs instruction = get_multi_line_input() if not instruction: return prompt: str = next( prompter_module().build_prompt(instruction=instruction.strip("\n")) ) batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) model.eval() with torch.no_grad(): generation_config = GenerationConfig( repetition_penalty=1.1, max_new_tokens=1024, temperature=0.9, top_p=0.95, top_k=40, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, do_sample=True, use_cache=True, return_dict_in_generate=True, output_attentions=False, output_hidden_states=False, output_scores=False, ) generated = model.generate( inputs=batch["input_ids"].to(cfg.device), generation_config=generation_config, ) print(tokenizer.decode(generated["sequences"].cpu().tolist()[0])) def choose_config(path: Path): yaml_files = list(path.glob("*.yml")) if not yaml_files: raise ValueError( "No YAML config files found in the specified directory. Are you using a .yml extension?" ) print("Choose a YAML file:") for idx, file in enumerate(yaml_files): print(f"{idx + 1}. {file}") chosen_file = None while chosen_file is None: try: choice = int(input("Enter the number of your choice: ")) if 1 <= choice <= len(yaml_files): chosen_file = yaml_files[choice - 1] else: print("Invalid choice. Please choose a number from the list.") except ValueError: print("Invalid input. Please enter a number.") return chosen_file def check_not_in(list1: List[str], list2: Union[Dict[str, Any], List[str]]) -> bool: return not any(el in list2 for el in list1) def train( config: Path = Path("configs/"), prepare_ds_only: bool = False, **kwargs, ): if Path(config).is_dir(): config = choose_config(config) # load the config from the yaml file with open(config, encoding="utf-8") as file: cfg: DictDefault = DictDefault(yaml.safe_load(file)) # if there are any options passed in the cli, if it is something that seems valid from the yaml, # then overwrite the value cfg_keys = cfg.keys() for k, _ in kwargs.items(): # if not strict, allow writing to cfg even if it's not in the yml already if k in cfg_keys or cfg.strict is False: # handle booleans if isinstance(cfg[k], bool): cfg[k] = bool(kwargs[k]) else: cfg[k] = kwargs[k] validate_config(cfg) # setup some derived config / hyperparams cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps or ( cfg.batch_size // cfg.micro_batch_size ) cfg.world_size = int(os.environ.get("WORLD_SIZE", 1)) cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0)) choose_device(cfg) cfg.ddp = cfg.ddp if cfg.ddp is not None else cfg.world_size != 1 if cfg.ddp: cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))} cfg.gradient_accumulation_steps = ( cfg.gradient_accumulation_steps // cfg.world_size ) setup_wandb_env_vars(cfg) if cfg.device == "mps": cfg.load_in_8bit = False cfg.tf32 = False if cfg.bf16: cfg.fp16 = True cfg.bf16 = False # load the tokenizer first tokenizer_config = cfg.tokenizer_config or cfg.base_model_config logging.info(f"loading tokenizer... {tokenizer_config}") tokenizer = load_tokenizer(tokenizer_config, cfg.tokenizer_type, cfg) if check_not_in( ["inference", "shard", "merge_lora"], kwargs ): # don't need to load dataset for these train_dataset, eval_dataset = load_prepare_datasets( tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH ) if cfg.debug or "debug" in kwargs: logging.info("check_dataset_labels...") check_dataset_labels( train_dataset.select( [random.randrange(0, len(train_dataset) - 1) for _ in range(5)] # nosec ), tokenizer, ) if prepare_ds_only: logging.info("Finished preparing dataset. Exiting...") return # Load the model and tokenizer logging.info("loading model and peft_config...") model, peft_config = load_model( cfg.base_model, cfg.base_model_config, cfg.model_type, tokenizer, cfg, adapter=cfg.adapter, inference=("inference" in kwargs), ) if "merge_lora" in kwargs and cfg.adapter is not None: logging.info("running merge of LoRA with base model") model = model.merge_and_unload() model.to(dtype=torch.float16) if cfg.local_rank == 0: logging.info("saving merged model") model.save_pretrained(str(Path(cfg.output_dir) / "merged")) return if "inference" in kwargs: logging.info("calling do_inference function") do_inference(cfg, model, tokenizer) return if "shard" in kwargs: model.save_pretrained(cfg.output_dir) return trainer = setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer) model.config.use_cache = False if torch.__version__ >= "2" and sys.platform != "win32": logging.info("Compiling torch model") model = torch.compile(model) # go ahead and presave, so we have the adapter config available to inspect if peft_config: logging.info(f"Pre-saving adapter config to {cfg.output_dir}") peft_config.save_pretrained(cfg.output_dir) # In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model if cfg.local_rank == 0: signal.signal( signal.SIGINT, lambda signal, frame: ( model.save_pretrained(cfg.output_dir), sys.exit(0), ), ) logging.info("Starting trainer...") if cfg.group_by_length: logging.info("hang tight... sorting dataset for group_by_length") resume_from_checkpoint = cfg.resume_from_checkpoint if cfg.resume_from_checkpoint is None and cfg.auto_resume_from_checkpoints: possible_checkpoints = [ str(cp) for cp in Path(cfg.output_dir).glob("checkpoint-*") ] if len(possible_checkpoints) > 0: sorted_paths = sorted( possible_checkpoints, key=lambda path: int(path.split("-")[-1]), ) resume_from_checkpoint = sorted_paths[-1] logging.info( f"Using Auto-resume functionality to start with checkpoint at {resume_from_checkpoint}" ) trainer.train(resume_from_checkpoint=resume_from_checkpoint) logging.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}") # TODO do we need this fix? https://huggingface.co/docs/accelerate/usage_guides/fsdp#saving-and-loading # only save on rank 0, otherwise it corrupts output on multi-GPU when multiple processes attempt to write the same file if cfg.local_rank == 0: model.save_pretrained(cfg.output_dir) # trainer.save_model(cfg.output_dir) # TODO this may be needed for deepspeed to work? need to review another time if __name__ == "__main__": fire.Fire(train)