#================================================================================== # https://huggingface.co/spaces/asigalov61/Giant-Music-Transformer #================================================================================== print('=' * 70) print('Giant Music Transformer Gradio App') print('=' * 70) print('Loading core Giant Music Transformer modules...') import os import time as reqtime import datetime from pytz import timezone print('=' * 70) print('Loading main Giant Music Transformer modules...') os.environ['USE_FLASH_ATTENTION'] = '1' import torch torch.set_float32_matmul_precision('high') torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn torch.backends.cuda.enable_mem_efficient_sdp(True) torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_cudnn_sdp(True) import TMIDIX from midi_to_colab_audio import midi_to_colab_audio from x_transformer_1_23_2 import * import random print('=' * 70) print('Loading aux Giant Music Transformer modules...') import matplotlib.pyplot as plt import gradio as gr import spaces print('=' * 70) print('PyTorch version:', torch.__version__) print('=' * 70) print('Done!') print('Enjoy! :)') print('=' * 70) #================================================================================== MODEL_CHECKPOINT = 'Giant_Music_Transformer_Medium_Trained_Model_25603_steps_0.3799_loss_0.8934_acc.pth' SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' NUM_OUT_BATCHES = 8 PREVIEW_LENGTH = 120 #================================================================================== print('=' * 70) print('Instantiating model...') device_type = 'cuda' dtype = 'bfloat16' ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) SEQ_LEN = 8192 PAD_IDX = 19463 model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 2048, depth = 8, heads = 32, rotary_pos_emb = True, attn_flash = True ) ) model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) print('=' * 70) print('Loading model checkpoint...') model.load_state_dict(torch.load(MODEL_CHECKPOINT, map_location='cpu')) print('=' * 70) print('Done!') print('=' * 70) print('Model will use', dtype, 'precision...') print('=' * 70) #================================================================================== def load_midi(input_midi): raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True) escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16) instruments_list = list(set([y[6] for y in escore_notes])) #======================================================= # FINAL PROCESSING #======================================================= melody_chords = [] # Break between compositions / Intro seq if 128 in instruments_list: drums_present = 19331 # Yes else: drums_present = 19330 # No pat = escore_notes[0][6] melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq #======================================================= # MAIN PROCESSING CYCLE #======================================================= pe = escore_notes[0] for e in escore_notes: #======================================================= # Timings... # Cliping all values... delta_time = max(0, min(255, e[1]-pe[1])) # Durations and channels dur = max(0, min(255, e[2])) cha = max(0, min(15, e[3])) # Patches if cha == 9: # Drums patch will be == 128 pat = 128 else: pat = e[6] # Pitches ptc = max(1, min(127, e[4])) # Velocities # Calculating octo-velocity vel = max(8, min(127, e[5])) velocity = round(vel / 15)-1 #======================================================= # FINAL NOTE SEQ #======================================================= # Writing final note asynchronously dur_vel = (8 * dur) + velocity pat_ptc = (129 * pat) + ptc melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304]) pe = e return melody_chords #================================================================================== def save_midi(tokens, batch_number=None): song = tokens song_f = [] time = 0 dur = 0 vel = 90 pitch = 0 channel = 0 patches = [-1] * 16 patches[9] = 9 channels = [0] * 16 channels[9] = 1 for ss in song: if 0 <= ss < 256: time += ss * 16 if 256 <= ss < 2304: dur = ((ss-256) // 8) * 16 vel = (((ss-256) % 8)+1) * 15 if 2304 <= ss < 18945: patch = (ss-2304) // 129 if patch < 128: if patch not in patches: if 0 in channels: cha = channels.index(0) channels[cha] = 1 else: cha = 15 patches[cha] = patch channel = patches.index(patch) else: channel = patches.index(patch) if patch == 128: channel = 9 pitch = (ss-2304) % 129 song_f.append(['note', time, dur, channel, pitch, vel, patch ]) patches = [0 if x==-1 else x for x in patches] if batch_number == None: fname = 'Giant-Music-Transformer-Music-Composition' else: fname = 'Giant-Music-Transformer-Music-Composition_'+str(batch_number) data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, output_signature = 'Giant Music Transformer', output_file_name = fname, track_name='Project Los Angeles', list_of_MIDI_patches=patches, verbose=False ) return song_f #================================================================================== @spaces.GPU def generate_music(prime, num_gen_tokens, num_mem_tokens, num_gen_batches, gen_outro, gen_drums, model_temperature, model_sampling_top_p ): if not prime: inputs = [19461] else: inputs = prime[-num_mem_tokens:] if gen_outro == 'Force': inputs.extend([18945]) if gen_drums: drums = [36, 38] drum_pitch = random.choice(drums) inputs.extend([0, ((8*8)+6)+256, ((128*129)+drum_pitch)+2304]) torch.cuda.empty_cache() model.cuda() model.eval() print('Generating...') inp = [inputs] * num_gen_batches inp = torch.LongTensor(inp).cuda() with ctx: with torch.inference_mode(): out = model.generate(inp, num_gen_tokens, filter_logits_fn=top_p, filter_kwargs={'thres': model_sampling_top_p}, temperature=model_temperature, return_prime=False, verbose=False) output = out.tolist() output_batches = [] if gen_outro == 'Disable': for o in output: output_batches.append([t for t in o if not 18944 < t < 19330]) else: output_batches = output print('Done!') print('=' * 70) return output_batches #================================================================================== final_composition = [] generated_batches = [] block_lines = [] #================================================================================== def generate_callback(input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens, gen_outro, gen_drums, model_temperature, model_sampling_top_p ): global generated_batches generated_batches = [] if not final_composition and input_midi is not None: final_composition.extend(load_midi(input_midi)[:num_prime_tokens]) midi_score = save_midi(final_composition) block_lines.append(midi_score[-1][1] / 1000) batched_gen_tokens = generate_music(final_composition, num_gen_tokens, num_mem_tokens, NUM_OUT_BATCHES, gen_outro, gen_drums, model_temperature, model_sampling_top_p ) outputs = [] for i in range(len(batched_gen_tokens)): tokens = batched_gen_tokens[i] # Preview tokens_preview = final_composition[-PREVIEW_LENGTH:] # Save MIDI to a temporary file midi_score = save_midi(tokens_preview + tokens, i) # MIDI plot if len(final_composition) > PREVIEW_LENGTH: midi_plot = TMIDIX.plot_ms_SONG(midi_score, plot_title='Batch # ' + str(i), preview_length_in_notes=int(PREVIEW_LENGTH / 3), return_plt=True ) else: midi_plot = TMIDIX.plot_ms_SONG(midi_score, plot_title='Batch # ' + str(i), return_plt=True ) # File name fname = 'Giant-Music-Transformer-Music-Composition_'+str(i) # Save audio to a temporary file midi_audio = midi_to_colab_audio(fname + '.mid', soundfont_path=SOUDFONT_PATH, sample_rate=16000, output_for_gradio=True ) outputs.append(((16000, midi_audio), midi_plot, tokens)) return outputs #================================================================================== def generate_callback_wrapper(input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens, gen_outro, gen_drums, model_temperature, model_sampling_top_p ): print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) if input_midi is not None: fn = os.path.basename(input_midi.name) fn1 = fn.split('.')[0] print('Input file name:', fn) print('Num prime tokens:', num_prime_tokens) print('Num gen tokens:', num_gen_tokens) print('Num mem tokens:', num_mem_tokens) print('Gen drums:', gen_drums) print('Gen outro:', gen_outro) print('Model temp:', model_temperature) print('Model top_p:', model_sampling_top_p) print('=' * 70) result = generate_callback(input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens, gen_outro, gen_drums, model_temperature, model_sampling_top_p ) generated_batches.extend([sublist[2] for sublist in result]) print('=' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') print('*' * 70) return tuple(item for sublist in result for item in sublist[:2]) #================================================================================== def add_batch(batch_number): final_composition.extend(generated_batches[batch_number]) # Save MIDI to a temporary file midi_score = save_midi(final_composition) block_lines.append(midi_score[-1][1] / 1000) # MIDI plot midi_plot = TMIDIX.plot_ms_SONG(midi_score, plot_title='Giant Music Transformer Composition', block_lines_times_list=block_lines[:-1], return_plt=True) # File name fname = 'Giant-Music-Transformer-Music-Composition' # Save audio to a temporary file midi_audio = midi_to_colab_audio(fname + '.mid', soundfont_path=SOUDFONT_PATH, sample_rate=16000, output_for_gradio=True ) return (16000, midi_audio), midi_plot, fname+'.mid' #================================================================================== def remove_batch(batch_number, num_tokens): global final_composition if len(final_composition) > num_tokens: final_composition = final_composition[:-num_tokens] block_lines.pop() # Save MIDI to a temporary file midi_score = save_midi(final_composition) # MIDI plot midi_plot = TMIDIX.plot_ms_SONG(midi_score, plot_title='Giant Music Transformer Composition', block_lines_times_list=block_lines[:-1], return_plt=True) # File name fname = 'Giant-Music-Transformer-Music-Composition' # Save audio to a temporary file midi_audio = midi_to_colab_audio(fname + '.mid', soundfont_path=SOUDFONT_PATH, sample_rate=16000, output_for_gradio=True ) return (16000, midi_audio), midi_plot, fname+'.mid' #================================================================================== def reset(): global final_composition global generated_batches global block_lines final_composition = [] generated_batches = [] block_lines = [] #================================================================================== PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) with gr.Blocks() as demo: demo.load(reset) gr.Markdown("

Giant Music Transformer

") gr.Markdown("

Fast multi-instrumental music transformer with true full MIDI instruments range, efficient encoding, octo-velocity and outro tokens

") gr.HTML(""" Check out Giant Music Transformer on GitHub!

Open In Colab or Duplicate in Hugging Face

for faster execution and endless generation! """) gr.Markdown("## Upload seed MIDI or click 'Generate' button for random output") input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) input_midi.upload(reset) gr.Markdown("## Generate") num_prime_tokens = gr.Slider(15, 6990, value=600, step=3, label="Number of prime tokens") num_gen_tokens = gr.Slider(15, 1200, value=600, step=3, label="Number of tokens to generate") num_mem_tokens = gr.Slider(15, 6990, value=6990, step=3, label="Number of memory tokens") gen_drums = gr.Checkbox(value=False, label="Introduce drums") gen_outro = gr.Radio(["Auto", "Disable", "Force"], value="Auto", label="Outro options") model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") model_sampling_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value") generate_btn = gr.Button("Generate", variant="primary") gr.Markdown("## Select batch") outputs = [] for i in range(NUM_OUT_BATCHES): with gr.Tab(f"Batch # {i}") as tab: audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3", elem_id="midi_audio") plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot") outputs.extend([audio_output, plot_output]) generate_btn.click(generate_callback_wrapper, [input_midi, num_prime_tokens, num_gen_tokens, num_mem_tokens, gen_outro, gen_drums, model_temperature, model_sampling_top_p ], outputs ) gr.Markdown("## Add/Remove batch") batch_number = gr.Slider(0, NUM_OUT_BATCHES-1, value=0, step=1, label="Batch number to add/remove") add_btn = gr.Button("Add batch", variant="primary") remove_btn = gr.Button("Remove batch", variant="stop") final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3", elem_id="midi_audio") final_plot_output = gr.Plot(label="Final MIDI plot") final_file_output = gr.File(label="Final MIDI file") add_btn.click(add_batch, inputs=[batch_number], outputs=[final_audio_output, final_plot_output, final_file_output] ) remove_btn.click(remove_batch, inputs=[batch_number, num_gen_tokens], outputs=[final_audio_output, final_plot_output, final_file_output] ) demo.unload(reset) #================================================================================== demo.launch() #==================================================================================