# LaVie: High-Quality Video Generation with Cascaded Latent Diffusion Models This repository is the official PyTorch implementation of [LaVie](https://arxiv.org/abs/2309.15103). **LaVie** is a Text-to-Video (T2V) generation framework, and main part of video generation system [Vchitect](http://vchitect.intern-ai.org.cn/). [![arXiv](https://img.shields.io/badge/arXiv-2307.04725-b31b1b.svg)](https://arxiv.org/abs/2309.15103) [![Project Page](https://img.shields.io/badge/Project-Website-green)](https://vchitect.github.io/LaVie-project/) ## Installation ``` conda env create -f environment.yml conda activate lavie ``` ## Download Pre-Trained models Download [pre-trained models](https://huggingface.co/YaohuiW/LaVie/tree/main), [stable diffusion 1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4/tree/main), [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/tree/main) to `./pretrained_models`. You should be able to see the following: ``` ├── pretrained_models │ ├── lavie_base.pt │ ├── lavie_interpolation.pt │ ├── lavie_vsr.pt │ ├── stable-diffusion-v1-4 │ │ ├── ... └── └── stable-diffusion-x4-upscaler ├── ... ``` ## Inference The inference contains **Base T2V**, **Video Interpolation** and **Video Super-Resolution** three steps. We provide several options to generate videos: * **Step1**: 320 x 512 resolution, 16 frames * **Step1+Step2**: 320 x 512 resolution, 61 frames * **Step1+Step3**: 1280 x 2048 resolution, 16 frames * **Step1+Step2+Step3**: 1280 x 2048 resolution, 61 frames Feel free to try different options:) ### Step1. Base T2V Run following command to generate videos from base T2V model. ``` cd base python pipelines/sample.py --config configs/sample.yaml ``` Edit `text_prompt` in `configs/sample.yaml` to change prompt, results will be saved under `./res/base`. ### Step2 (optional). Video Interpolation Run following command to conduct video interpolation. ``` cd interpolation python sample.py --config configs/sample.yaml ``` The default input video path is `./res/base`, results will be saved under `./res/interpolation`. In `configs/sample.yaml`, you could modify default `input_folder` with `YOUR_INPUT_FOLDER` in `configs/sample.yaml`. Input videos should be named as `prompt1.mp4`, `prompt2.mp4`, ... and put under `YOUR_INPUT_FOLDER`. Launching the code will process all the input videos in `input_folder`. ### Step3 (optional). Video Super-Resolution Run following command to conduct video super-resolution. ``` cd vsr python sample.py --config configs/sample.yaml ``` The default input video path is `./res/base` and results will be saved under `./res/vsr`. You could modify default `input_path` with `YOUR_INPUT_FOLDER` in `configs/sample.yaml`. Smiliar to Step2, input videos should be named as `prompt1.mp4`, `prompt2.mp4`, ... and put under `YOUR_INPUT_FOLDER`. Launching the code will process all the input videos in `input_folder`. ## BibTex ```bibtex @article{wang2023lavie, title={LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion Models}, author={Wang, Yaohui and Chen, Xinyuan and Ma, Xin and Zhou, Shangchen and Huang, Ziqi and Wang, Yi and Yang, Ceyuan and He, Yinan and Yu, Jiashuo and Yang, Peiqing and others}, journal={arXiv preprint arXiv:2309.15103}, year={2023} } ``` ## Acknowledgements The code is buit upon [diffusers](https://github.com/huggingface/diffusers) and [Stable Diffusion](https://github.com/CompVis/stable-diffusion), we thank all the contributors for open-sourcing. ## License The code is licensed under Apache-2.0, model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form]().