# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name class PaintByExampleImageEncoder(CLIPPreTrainedModel): def __init__(self, config, proj_size=None): super().__init__(config) self.proj_size = proj_size or getattr(config, "projection_dim", 768) self.model = CLIPVisionModel(config) self.mapper = PaintByExampleMapper(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size) self.proj_out = nn.Linear(config.hidden_size, self.proj_size) # uncondition for scaling self.uncond_vector = nn.Parameter(torch.randn((1, 1, self.proj_size))) def forward(self, pixel_values, return_uncond_vector=False): clip_output = self.model(pixel_values=pixel_values) latent_states = clip_output.pooler_output latent_states = self.mapper(latent_states[:, None]) latent_states = self.final_layer_norm(latent_states) latent_states = self.proj_out(latent_states) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class PaintByExampleMapper(nn.Module): def __init__(self, config): super().__init__() num_layers = (config.num_hidden_layers + 1) // 5 hid_size = config.hidden_size num_heads = 1 self.blocks = nn.ModuleList( [ BasicTransformerBlock(hid_size, num_heads, hid_size, activation_fn="gelu", attention_bias=True) for _ in range(num_layers) ] ) def forward(self, hidden_states): for block in self.blocks: hidden_states = block(hidden_states) return hidden_states