from dotenv import load_dotenv import os from transformers import BlenderbotSmallForConditionalGeneration, AutoTokenizer from helpers import in_cache from fastapi import FastAPI from pydantic import BaseModel import redis from starlette.middleware.cors import CORSMiddleware load_dotenv() model = BlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M", cache_dir="new_cache_dir/") tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M", cache_dir="new_cache_dir/") class UserMSGRequest(BaseModel): message: str r = redis.Redis( host='eu2-suitable-cod-32440.upstash.io', port=32440, password=os.getenv('UPSTASH_REDIS_PWD'), ssl=True ) app = FastAPI() origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.get("/status") def status (): return {"status": "OK"} @app.post("/generate-message") async def root(utterance: UserMSGRequest): key_list = r.keys() is_in_cache = in_cache(utterance.message, key_list) if is_in_cache.status: print("From Cache!") return r.get(is_in_cache.closest_match) inputs = tokenizer(utterance.message, return_tensors = "pt") results = model.generate(**inputs) response = tokenizer.batch_decode(results, skip_special_tokens=True)[0] r.set(utterance.message, response, 250) return response if __name__ == '__main__': import uvicorn uvicorn.run(app, host="0.0.0.0", port=8080)