# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from huggingface_hub import hf_hub_download from functools import lru_cache from offline_asr import OfflineAsr sample_rate = 16000 @lru_cache(maxsize=1) def get_gigaspeech_pre_trained_model(): nn_model_filename = hf_hub_download( # It is converted from https://huggingface.co/wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2 repo_id="csukuangfj/icefall-asr-gigaspeech-pruned-transducer-stateless2", filename="cpu_jit-epoch-29-avg-11-torch-1.10.0.pt", subfolder="exp", ) bpe_model_filename = hf_hub_download( repo_id="wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2", filename="bpe.model", subfolder="data/lang_bpe_500", ) return OfflineAsr( nn_model_filename=nn_model_filename, bpe_model_filename=bpe_model_filename, token_filename=None, decoding_method="greedy_search", num_active_paths=4, sample_rate=sample_rate, device="cpu", ) @lru_cache(maxsize=1) def get_wenetspeech_pre_trained_model(): nn_model_filename = hf_hub_download( repo_id="luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2", filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt", subfolder="exp", ) token_filename = hf_hub_download( repo_id="luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2", filename="tokens.txt", subfolder="data/lang_char", ) return OfflineAsr( nn_model_filename=nn_model_filename, bpe_model_filename=None, token_filename=token_filename, decoding_method="greedy_search", num_active_paths=4, sample_rate=sample_rate, device="cpu", )