# Import libraries import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns def run(): # Load the dataset df = pd.read_csv("bquxjob_24b82863_18c2d385ce5.csv") # Create a sidebar st.sidebar.title("EDA Options") st.sidebar.subheader("Choose the features (Only choose 1)") # Create checkboxes for the features # Create radio buttons for the features selected_feature = st.sidebar.radio("Select Feature", ["limit_balance", "sex", "education_level", "marital_status", "age", "pay_1", "bill_amt_1", "pay_amt_1", "default_payment_next_month"]) # add sub-header st.sidebar.subheader("Choose the metrics for visualization (can choose multiple)") # Create a checkbox for the statistics stats = 0 stats = st.sidebar.checkbox("Statistics") # Create a checkbox for the distribution dist = 0 dist = st.sidebar.checkbox("Distribution") # Create a main title st.title("Exploratory Data Analysis on Default of Credit Card Clients Dataset") # Display the default text if no features are selected if stats == 0 and dist == 0: st.write("## Welcome to the EDA.") st.write("Please select the features and metrics that you want to explore from the sidebar.") else: # Display the statistics if stats: st.subheader("Statistics") st.write(df[selected_feature].describe()) # Display the distribution if dist: st.subheader("Distribution") fig, ax = plt.subplots(figsize=(10, 6)) sns.histplot(df[selected_feature], kde=True, bins=20) st.pyplot(fig) if __name__ == '__main__': run()