import os from functools import lru_cache from typing import Dict, Optional import requests import torch as th from filelock import FileLock from tqdm.auto import tqdm MODEL_PATHS = { # "base": "https://huggingface.co/datasets/asifhugs/weights/blob/main/base.pt", # "upsample": "https://huggingface.co/datasets/asifhugs/weights/blob/main/upsample.pt", "base-inpaint": "https://openaipublic.blob.core.windows.net/diffusion/dec-2021/base_inpaint.pt", "upsample-inpaint": "https://openaipublic.blob.core.windows.net/diffusion/dec-2021/upsample_inpaint.pt", "clip/image-enc": "https://openaipublic.blob.core.windows.net/diffusion/dec-2021/clip_image_enc.pt", "clip/text-enc": "https://openaipublic.blob.core.windows.net/diffusion/dec-2021/clip_text_enc.pt", } @lru_cache() def default_cache_dir() -> str: return os.path.join(os.path.abspath(os.getcwd()), "glide_model_cache") def fetch_file_cached( url: str, progress: bool = True, cache_dir: Optional[str] = None, chunk_size: int = 4096 ) -> str: """ Download the file at the given URL into a local file and return the path. If cache_dir is specified, it will be used to download the files. Otherwise, default_cache_dir() is used. """ if cache_dir is None: cache_dir = default_cache_dir() os.makedirs(cache_dir, exist_ok=True) response = requests.get(url, stream=True) size = int(response.headers.get("content-length", "0")) local_path = os.path.join(cache_dir, url.split("/")[-1]) with FileLock(local_path + ".lock"): if os.path.exists(local_path): return local_path if progress: pbar = tqdm(total=size, unit="iB", unit_scale=True) tmp_path = local_path + ".tmp" with open(tmp_path, "wb") as f: for chunk in response.iter_content(chunk_size): if progress: pbar.update(len(chunk)) f.write(chunk) os.rename(tmp_path, local_path) if progress: pbar.close() return local_path def load_checkpoint( checkpoint_name: str, device: th.device, progress: bool = True, cache_dir: Optional[str] = None, chunk_size: int = 4096, ) -> Dict[str, th.Tensor]: if checkpoint_name not in MODEL_PATHS: raise ValueError( f"Unknown checkpoint name {checkpoint_name}. Known names are: {MODEL_PATHS.keys()}." ) path = fetch_file_cached( MODEL_PATHS[checkpoint_name], progress=progress, cache_dir=cache_dir, chunk_size=chunk_size ) return th.load(path, map_location=device)